ISSN 0084-6198

Algol Bulletin no. 40

AUGUST 1976

CONTENTS PAGE
AB40.0 Editor's Notes 2
AB40.1 : Announcements

AB40.1.1 ALGOL 60M

AB40.1.2 Conference Proceedings: New Directions in
Algorithmic Languages 3
AB40.1.3 Conference Proceedings: Applications of
ALGOL 68 3
AB40.1.4 ALGOL 68 Conference: Strathclyde, 1977, 3
AB40.1.5 ALGOL 68 Test Set 4
AB40.1.6 ALGOL 68 Bibliography 4
AB40.1.7 Textbook: A Practical Guide to ALGOL 68. 4
AB40.1.8 Module protection already working in SIMULA 5
AB40.1.9 ALGOL 68 Revised Report - Erratum 5
AB40.2 Letters to the Editor
AB40.2.1 Initialized generators
AB40.2.2 The Name of the Language
AB40. 4 Contributed Papers
AB40.4.1 J.Hilden, Integral Division once more. 8

AB40.4.2 IvanSklena¥, A method of implementation of 10
Independently Compiled Routine Texts in ALGOL 68

AB40.4.3 R. Haentjens, Proposal for a Simple Syntax
for the ALGOL 68 unit. 21

AB40.5 IFIP Document
Wilfred J. Hansen and Hendrik Boom,
Report on the Standard Hardware Representation
for ALGOL 68 24

AB40 p 1

The ALGOL BULLETIN is produced under the auspices of the Working Group
on ALGOL of the International Federation for Information Processing (IFIP WG2.1,
Chairman Professor J.E.L. Peck, Vancouver).
The following statement appears here at the request of the Council of IFIP:
""The opinions and statements expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IFIP undertakes no responsibility
for any action which might arise from such statements. Except in the case
of IFIP documents, which are clearly so designated, IFIP does not retain
copyright authority on material published here. Permission to reproduce
any contribution should be sought directly from the authors concerned.
No reproduction may be made in part or in full of documents or working papers

of the Working Group itself without permission in writing from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been
provided by Professor Dr. Ir. W. L. Van der Poel, Technische Hogeschool, Delft,
The Netherlands. Mailing in N. America is handled by the AFIPS office in

New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of *7 per three issues, payable in advance. Orders and remittances
(made payable to IFIP) should be sent to the Editor. Payment may be made in any
currency (a list of acceptable approximations in the major currencies will be
sent on request), but it is the responsibility of each sender to ensure that
cheques etc. are endorsed, where necessary, to conform to the currency control
requirements of his own country. Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor, since it is
not the policy of IFIP that any person should be completely debarred from
receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H, Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
England.

Back numbers, when available, will be sent at *3 each. However, it is
regretted that only AB32, AB34, AB35, AB37, AB38 and AB39 are currently available.
The Editor would be willing to arrange for a Xerox copy of any individual paper

to be made for anyone who undertook to pay for the cost of Xeroxing.

AB4O p 2

AB40.0 Editor's Notes

Welcome to our fortieth issue! However, rather than indulge in an orgy
of self-congratulation (that can wait until the fiftieth) I intend to be very

brief.

My plea in the last issue for more papers for publication has met with a good
response. Three of them appear in this issue, and there are more to follow.

Please keep up the good work,

The principal content of this issue is the final version of the
Hardware Representation for ALGOL 68, approved at the Working Group meeting in

Munich. Implementors,please implement!

Of the other two documents approved at Munich, the one concerned with
Modified ALGOL 60 (ALGOL 6OM) appears in the August Computer Journal (again,
implementors please implement). The other (ALGOL 68S) is still being worked on.

AB4O p 3
AB40.1 Announcements

AB40.1.1 ALGOL 60M
"A supplement to the ALGOL 60 Revised Report" by R.M. De Morgan, I.D. Hill

and B.A. Wichmann is published in the Computer Journal, Vol. 19 No. 3,
August 1976. This supplement takes the form of a series of modificatioms, as
approved by the working group at its 1975 meeting, to the Revised ALGOL 60
Report. The full "Modified Report on the Algorithmic Language ALGOL 60",
derived by elaboration of the supplement, will be published in the Computer
Journal, Vol. 19 No. 4, November 1976.

AB40.1.2 Conference Proceedings: New Directionsin Algorithmic Languages

The papers and discussion at the 1975 meeting of Working Group 2.1 at
Munich,together with some additional papers, have been edited by Steve Schuman,
and all ALGOL Bulletin subscriberswill automatically get a copy. Additional
copies may be obtained, so long as stocks last, from Stephen A. Schuman,

IRIA - Laboria, BP 5 — Rocquencourt, 78150 LE CHESNAY, France.

AB40.1.3 Conference Proceedings: Applications of ALGOL 68

University of East Anglia, Norwich, March 23rd - 26th, 1976. A limited
number of copies of the proceedings are available, price £6.50, from
Dr. V.J. Rayward-Smith, (Algol 68 Conference), School of Computing Studies,
University of East Anglia, Norwich, England.

AB40.1.4 ALGOL 68 Conference: Strathclyde, 1977

A three-day conference on ALGOL 68 will be held at the University of
Strathclyde from the evening of Monday, 28th to Thursday, 3lst March, 1977.
The main topics to be covered will be implementation, teaching and applications
of ALGOL 68. Further details can be obtained from Dr. R.B. Hunter, Department
of Computer Science, University of Strathclyde, Livingstone Tower, 26 Richmond
Street, Glasgow, Gl 1XH, U.K,

AB4O0 p 4

AB40.1.5 ALGOL 68 Test Set

An extensive Test Set for ALGOL 68 compilers has been assembled at the
Mathematical Centre in Amsterdam, Netherlands. The Test Set comprises (at the
moment) 160 programs covering the entire full language as defined in the Revised
Report on the Algorithmic Language ALGOL 68. It should be useful to anyone
implementing ALGOL 68 (both at desk—top level and at third-drawer level) and be
interesting to everybody concerned with ALGOL 68. It has been used commercially
by Control Data to test their ALGOL 68 system.

The Test Set is available in book form for $4 (including a print—-out of the
latest version) and on magtape for $12 if tape is supplied or $20 if no tape is

supplied.

Please address requests to the editor: Dick Grune, Mathematical Centre,

Tweede Boerhaavestraat 49, Amsterdam.

AB40.1.6 ALGOL 68 Bibliography

This bibliography has been prepared,on behalf of the IIL, by Robert Uzgalis,
Computer Science Department, School of Engineering and Applied Science, U.C.L.A.,
Los Angeles, California 90024, U.S.A., from whom copies may be obtained.

Buz would also like suggestions for future editions, together with copies of any
papers that you may write on ALGOL 68 related topics, for inclusion in his A68

Information Repository.

AB4O.1.7 Textbook: A Practical Guide to ALGOL 68

This new textbook, by Frank G. Pagan,is published by Wiley in both hard-
back and soft-cover editions. It is intended both as an introductory text to
those with no previous programming experience, and for those transferring from

other languages.

It teaches programming in the structured style (jumps are relegated to the
last chapter) and there are copious exercises. The language described is
strictly in accordance with the Revised Report and, although there are a host

of minor misprints, technical errors are conspicuously absent.

AB4O p 5

AB40.1.8 Module protection already working in SIMULA.

The Simula Development Group (with representatives for the existing 10
Simula implementations) has accepted in September 1975 a construct for module
protection similar to the proposal by C.H. Lindsey in AB39 p. 20. Attributes
of a module can be made inaccessible by means of the hidden and the protected
specification. The use of two specifications makes it possible to let certain
attributes be accessible only inside a module, other attributes accessible within
a system of cooperating modules, other attributes accessible wherever the module

itself is accessible.

See further Simula Newsletter, No. 1, 1976, or (in more detail) DECsystem—
10 Simula Gazette, No. 3, Vol. 2, 1976 (Can be ordered from Section 142, Swedish
National Defense Research Institute, S-104 50 Stockholm 80 , Sweden.)

The Module pfotection scheme in SIMULA is already implemented and available
in Release 3 of the DECsystem10 Simula system. The system is available for a
price of about § 100 from the Swedish National Defense Research Institute,
Section 142, S-104 50 Stockholm 80, Sweden.

The DECsystemr10 Simula system implements the full Simula language (comparable
in power to Algol 68 or PL/I, and based on the same ideas, but closer to Algol 60).
The system is especially aimed at conversational applications, allowing one or more
conversational terminals to be connected to an executing program, and the system
has a conversational debugging system where the user at the conversational

terminal can set breakpoints and query about internal data values.

A Codasyl type DBMS system entirely written in Simula, for use by Simula

programmers or at a user terminal, is distributed with the DECsystem10 Simula system.

A system for using separately compiled modules in a way which in no way
endangers the security of the language and which does not incur any extra run
time overhead is also available with the DECsystemr10 Simula system.

Jacob Palme 1976-03~-26
AB40,1.9 ALGOL 68 Revised Report — Erratum

The following erratum should be applied to the Springer (i.e Acta Information

edition of the Revised Report.

P. 118 9.4.1.b. "times ten to the power symbol" oy => 1 \ %

AB40 p 6

AB40.2.1 1Initialized Generators

30 March 1976
The Editor,

Algol Bulletin,

Dear Sir,

Many generators in Algol 68 programs involve the execution of code at
run-time (e.g. setting up dope vectors or reserving flexible storage); some
also involve code to be executed at the end of the life of a value (to free flexible
storage, for instance). As computers must therefore cater in some way for this,;
the thought comes to me that the representation of any generator .could be extended
to include the optional specification of user written procedures to be executed
at these points in the life of the generated value. These procedures would have
one parameter (the generated value) and yield a void result. I haven't worked
out the scope implications, but a structure including some procedures which might
be initialised in the user generated code (partial parametrisation might be very
useful to loosen scope restrictions) could be the basis of another proposal for
generating modules in Algol 68; some of the Simula class facilities might also
become available, The main objection to this scheme is that all references
to objects of the module would have to be selectiong;but set against this is the
automatic hiding of local values (in the procedure) and the use of an identifier
to choose a particular copy of the module. Thus a declaration is similar to
Lindsey's invoke and a selection similar to access. If this proposal could be
made workable, not only would it require less change to the language than other
proposals, but it would also allow such constructions as:

MODE CLEARINT = [1 : n] INT

¢ brief pack containing € (¢ initialisation ¢ PROC(REF CLEARINT ia) VOID:

FOR {- TO n DO ia [i] := O OD,
¢ closedown ¢
SKIP).
Perhaps your readers can produce some more exiting examples.
Yours faithfully,
Paul Hodges
53 Ellerton Road,

Surbiton,
Surrey KT6 7TY

AB40 p 7

AB40.2.2 The Name of the Language

The Editor, 30 March 1976
Algol Bulletin

Dear Sir,

I wonder whether there are others who feel, as I do, that the biggest mistake
of Algol 68 is its name. I have found it a great disadvantage when explaining

the language to unsympathetic (and some sympathetic) friends.

A large part of the computer industry considers 'Algol' to be synonymous
with run—time inefficiency and a total lack of any facilities of use outside
numerical analysis, and people with this view consistently think that Algol 68
is a slight botch—up of Algol 60 which is as inefficient. Thus the name works

against it.

Those who know about Algol 60 and Algol 68 are not prone to this failing,
but I cannot be alone in feeling that in both speech and writing, 'Algol 68'
is a ¢lumsy phrase; and after one implementation was called Algol 68R the
habit has grown worse. Also the R in Algol 68R means that we have to speak of
'revised Algol 68R' in full, rather than using that Algol 60M device mentioned
in AB39.

The motor car industry is forsaking numbers for names (e.g. British
Leyland's 18/22 is now the Princess and its 1100/1300 the Allegro). The computer
Industry has a fine record of names (Pegasus, Deuce,Fortran,Algol, Jovial, Coral)
which has lasted longest in the language field. Can we not follow Wirth (Euler
and Pascal) and show the outside world (and even the hardware manufacturers) that
modern life with computers is not all numbers. How about a competition for a

real name for revised Algol 68? - or is it too late?

Yours faithfully,

Paul Hodges

53 Ellerton Road
Surbiton,

Surrey KT6 7TY.

Editor's Note: Yes, it is indeed too late, but it is an interesting thought,

nevertheless.

AB4O p 8
AB40,.4.1 Integral Division once more

J. Hilden

 (University Institute of Medical Genetics, Copenhagen).

Integral division once more

The proposal Ri by L.G.L.T. Meertens, AB39.4.3, was actually
employed in the now obsolete IBM7094 implementation of the list
processing language L7 by P. Jensen and me. Unfortunately this
implementation was never documented except in Danish. To be specific,
the divide and modulo operations ensured that

0 <val(amod b) = val(a mod (-b)) < abs(val(b)) -1,
and

val(a) = val((a#b)xb + a mod b),
in self-explanatory notation. These equations imply that Meertens'
requirement

val({(a + n X b) #b) = wval(a £ b + n)
is met. However, we had to warn potential users against the following
pitfall:

val(=847) = wval(-(8%7)) = -1,
whereas

val((L8)#7) = -2,
Thus, whenever a divide or modulo operation is textually preceded
by a unary or binary minus the programmer would have to be a bit
careful. |

A special kind of integer division that occurs very oftemn in
practical programming is the following: how many boxes of capacity b
are needed to ship a pieces? Denote the desired operation by split.
Then 100 split 20 = 5 and 101 EEliE 20 = 6, etc. Using conventional

integer division, one would have to write

boxes := (a-1)%b + 1;

AB4O p 9

but even this clumsy piece of program may not have the desired effect
unless a is strictly positive. Using L7 division, it would work even
for a=0; it might even be replaced by
boxes :=—(-a)+b;

Neither is as easy and clean as we would want. The natural remainder
operation associated 'with split answers the question: how many empty
places remain when the a pieces have been packed? E.g., 100 splitrem
20 = 0, while 101 splitrem 20 % 19,

It would be interesting to see if anyone could suggest a programming
syntax that displayed the symmetry between the aforementiened Meertens-L7

divide and modulo operations on the one hand and the split-splitrem

operations on the other. The problem is find a neat way of indicating
whether remainders should be taken from below or from above, as it were,

when b does not divide a.

AB40 p 10
AB40.4.2

A method of implementation of independently compiled routine
texts in ALGOL 68

Ivan Sklen&t
(INSTITUTE OF SOLID STATE PHYSICS, PRAGUE)

1. Introduction

In this paper the design is presented for the independent
compilation of routine texts in TESLA ALGOL 68. (TESLA ALGOL 68
is a dialect of ALGOL 68.) Independently compiled routine texts
(further ICRT) can be connected with calling module via formal
parameters ohly.

ICRTs are linked (in load module) as relocetable segments
and they are placed on the stack of local values in run-time,

therefore they overlay one another or the data, too.

2. TESLA ALGOL 68

TESLA ALGOL 68 have been implemented on the TESLA 200 compu-
ter. It is a small computer with IBM 360-like structure. TESLA
ALGOL 68 compiler requires 64 kByte memory at least including
10 kByte superviso;. Instruction codes can contain direct or based
addresses. Due to the small memory size the segmentation of the
compiler as well as of the object program is necessary. Operating
system admits using relocatable segmentis (in the linkage loader
and in the binary loader), but the TESLA 200 standard programming
techniques use unrelocatable segmenis and direct addressing (i.e.
localization of segments is fixed by linkage editor). ioreover

library object modules cannot be linked into relocatable segments.

3. The use of ICRT from the user s point of view

It is supposed that interface between ICRT and calling

AB4O p 11

modulesx)

is possible via formal parameters only.

The source program consists of the main modul and ICRT modu-
les. An ICRT module is preceded by a statement defining the entry
name of ICRT. This statement also defines the boundaries between
modules in source program. All modules in the source program may
be replaced by their object binary relocatable form.

The syntax of ICRT is the following:
mode declaration list option, go on symbol, routine text. (1)

In the module calling the procedure that is défined by means
of ICRT the procedure can be referred only in the identity decla-
ration of the following form:
procedure symbol, virtual declarer pack option,
virtual declarer option, procedure identifier, equals symbol,
pregmat symbol, extern symbol, extern name, pragmat symbol. (2)
An example:

proc (int, int) int gcd = pr extern ged pr

The pragmat on the right of the equal symbol substitutes routine
text defined by the ICRT identified by the extern name.
If ICRT is recursive it must contain the declaration of
the form (2) of itself, e.g.:
. ICRT PROC2

mode dint = struct(int a,b);
(real a, dint b) real:

begin

proc (real,dint) real rekurs = pr extern proc2 pr;

L]
[
L4

x) The calling module maey be the main modul or an ICRT module

AB40 p 12

:=rekurs(z,(1,1));

end

(statement ". ICRT PROC2" defines the extern name of the ICRT).

4. Compiler aspects
4. 1 Compilation of ICRT
On the TESLA 200 the linkage loader and segmented program

do not contain fécilities allowing to change addresses during
loading relocatable segments to the memory. |

Therefore addresses in an ICRT are compiled according to
the following rules:

- all local addresses in instructions codes are based,

- all addresses in the address-like constants {i.e. constants
defined in an assembler by DC A(...)) are changed duriug the
loading using a table FABRLD attached to the modul by the compiler,

- all external addresses (external from the point of view
of the ICRT) are explicitly given in the resident segment O,

- the communication between calling and called module is
realised by means of the table of segments (TABSEG),

- the entry address of the modul is the first address of
the module.

4. 2 Compilation of the declaration (2)

At the place of procedure identity declaration having
a routine text at its right hand side the routine descriptor
is formed in the local area in the run-time stack. The des-
criptor consists of the routine identification (used in run-time
error messages), routine entry address (EA) and a pointer
to the start of the local area of the procedure statically

surrounding the considered one.

" AB4O p 13

If the routine text is replaced by an ICRT indication
the sequence of instructions generating the routine descriptor
contains a call of a roufine loading the segment containing
ICRT on the run-time stack. The routine places the procedure
entry address into the run-time descriptor and into the table
TABSEG. The entry into the TABSEG is derived from the ICRT segment
number. The segment address is deleted from TABSEG, when the
range of the declaration is left.
4. 3 The loading and deleting routines
All ICRT'modules are linked as separate segments. The presence
of the ICRT segments at the stack is indicated in the TABSEG
table. The TABSEG contains one item for each segment. This item
contains the address of the segment when it is present on the
stack, or zero otherwise. The TABSEG is inicialized by zeros.
Let i be the number of a segment. The routine loading the
ICRT segment into memory works as follows: |
Step 1: Set TOP2 equal to TOP (TOP is & register containing
the first free address on the stack).
Step 2: If TABSEG(i) # O then step 6 is taken.
Step 3: Load the segment number i on the stack beginning
on the address TOP.
Step 4: Add the value of TOP to all addresses referred in the
TABRLD table.
Step 5: Set TOP equal to the TABRLD start (now the TABRLD is
overlapped by the stack).
Step 6: Set EA equal to TOP2.
At leaving of the range of some declaration (2) the

addresses of the corresponding ICRT segment must be deleted from

AB4O p 14

the TABSEG. In this case a routine is called comparing all
items in the TABSEG with TOP. If TAESEG(i) is greater than the
value of TOP the TABSEG(i) is set equal to zero.

The routine is called (and the corresponding instructions
generated) only at exit from the range containing the declara-
tion (2).

5. Pre-editor

5. 1 Purpose of the pre-editor

With respect to the limited facilities of the linkage loader
it seems to be useful in the case of segmented programs to insert
between the compiler and the linkage loader a program facilita-
ting the interface between the compiler and the linkage loader.
This program will be called a pre-editor.

The main input file of the linkage loader containing the
object modules and linkage control statements is denoted =5.
The linkage control statements describe the overlay structure,
contain references to libraries etc. The file %5 is the output
of compilers. It contains translated modules, copies of the pre-
compiled object modules and linkage control statements creating

together with the source modules the input stream of the compiler.

The function of @he pre-editor is to reorganize ®5. The
pre-editor runs in two passes: in the first cne the #5 is
processed as an input file, in the seccnd one the reorgenized =5
is created. The function of the pre-editor will be illustrated

on the following example:

AB4O p 15

a) The input of the compiler

begin ' 7

. master module

proc (real) reel pl = pr extern pl pr in source form
end J

enda 3

. ICRT P1 ;

(real x) real:

begin

: - routine text pl
proc (real) int p2 = pr exiern p2 pr >1n rource form

z:=gin(x);

end

« BAR P2)

. routine text p2
. fin object form
* J

. EgF end of file

b) The output from the compiler (=the imput for pre-editor
= the contents of the file =5)

. BAR MASTER)

* jmaater module in
. object form

. BAR Pl routine text pl
. ' in object form

s BAR P2 routine text p2

in object form

AB4O p 16

. EgF end of file

c¢) The output of the pre-editor (= the input of the linkage

loader)
« LINK O
. BAR MASTER
. \
« BAR TABSEG ;
: ‘ J resident segment.
. SETEX SIN
. LINK 1,R
: BAR Fl 5 relocatable
: J segment number 1
. LINK 2,R A
. BAR P2 ;
. | relocatable
X) segnent number 2
. EgF end of file

The control statements are marked by cepitals. The program
contains 3 modules, the master module and the ICRT mddule Pl are
in source form, the third one is in object form. The statement
", BAR P2" precedes the records of object form of ICRT module P2.
‘ Compiler output contains all modules in' the object form.
Pre-éditor inserts some control statements among the object
modules. The control statement ". LINK O" heads the resident
segment (=segment 0). To this segment all standard library modu-

les must be attached. This is performed by the statement
", SETEX SIN" attaching the module for standard function sin

fromthe library.Note that this function is called from ICRT Pl only.
The control statements ". LINK 1,R" and ". LINK 2,R" head

AB4LO p 17

/ the ICRT
segments. The numbér 1l (or 2) is used for idenfification in the
table TABSEG. This number is supplied by the linkage loader into
the sequence of the instructions for the calling of the segment
loading (see 4.3). The module TABSEG is generated by the pre-
editor and contains the table TABSEG (the length of this module
depends on the number of ICRT modules).

5. 2 Mode checking

Comment records are inserted inside the object moduls during
the compilation. The comments contain the initernal representa-
tion of virtual declarers used in the declarations of type (2)
and the virtual declarers derived from the formal declarers in
the head of ICRT. This information is collected during the first
pass of the pre-editor and after the first pass this information
is used in mode check. |

5..3 Libraries of the ICRT modules

A1l ICRT modules must be present at the output from pre-
editor. From this fact it is obvious, that the user libraries
of the ICRT modules cannot be processed by the linkage loader.
During the first pass of the pre-editor all the extern referren-
ces are collected. After the input file =5 is exhausted, the
first pass of the pre-editor takes up the processing of the
library file. (This library file contains user s pre-compiled
ICRT object modules.) The modules entry addresses of which cor-
responds to some unresolved external referrences are selected
from the library and processed like the ICRT modules in the
input file. After the library file is exhausted, the first peass
is finished and all the remaining unresolved referrences are

placed into the control statements ". SETEX".

AB4O p 18

6. Advantages and disadvantages

The main advantages of this concept are the following:
- code of ICRT is overlaied with the data on the stack;

- the errors produced by the conflict between the overlay
structure and the logzical structure of calling are eliminated.
The user can never make an overlay error;

- the mode checking can be done during the compile-time
(in the pre-editor);

The disadvantages are the following:

- the library modules must be attached to the resident seg-
ment not only in the case that they are called from the resident
segment, but also if they are called from the ICRTs only;

- the interface between the calling module and ICRT is possi-
ble via formal-actual parameters mechaniem only;

- a greater administration in the range exit.

AB40 p 19

References

Revised Report on the Algorithmic Language ALGOL 68,

Ed: A. van Wijngaardem, B.J.Mailloux, J.E.L.Peck, C.H.A.Koster,
M.Sintzoff, C.H.Lindsey, 1I1.G.L.T.Meertens and R.G.Fisker,

Acta Informatica 5, 1-236 (1975)

K. Kleine, Segmentation of Algol 68 programs,
Conference on Experience with Algol 68, Liverpool, 1975.

UNSEGMENTED PROGRAM

COMP ILER OF
ALCOL 68

STATEMENTS FOR
L INKACE-LOADER
+

SOURCE MODULES
+
OBJECT MODULES

STATEMENTS FOR
L INKAGE-LOADER
+

0BJECT MODULES

LIBRARY OF ICRTS®

0BJECT MODULES

AB4O p 20

SEGMENTED PROGRAM

COMPILER OF
ALCOL 68

5

y

@,

L1BRARY OF PRELUDES®

0BJECT MODULES

—>{ PRE-EDITOR |

!

[LINKACE-LOADER

)
4

LOAD PROCRAM

@

| LINKAGE-LOADER |

AB4O p 21
PROPUSAL FUk A SIMPLEK SYNTAX Hay 25th, 1976

FOR THE ALGOLO8 UNIT K. Haent jens
KIS Erussels

1. Introduction

Units in ALGOL68 are used to program the more primitive
actions. Their syntax defines how a particular unit is
to be parsed (Kevised Keport 5). :

This syntax is defined in such a way that normally the
hierarchy of actions is as you think it should be; in
neutral situations some choice is made. :

Examples:

{1} age of person := 28

is parsed as (age 9of person):=28 . If it were parsed as
age of (person:=28) , this would almost never reflect
the programmers intention.

{2} age of person (2] ,

is parsed as age of (person[2]) . This is a neutral case.
If the programmer wants the opposite parsing, he should

use parentheses:

{3} (child of jim) (2]
The construction "child[2] of jim" does not exist in ALGOL6S.

{4} ref int(pointer) :z= 0
In the original ALGOL68 one would have written
"(pef int : pointer) := 0" because

int : pointer := 0" was parsed as ‘"pref int: (pointer:=0)".

An ideal unit syntax should be simple but still define an
acceptable hierarchy of primitive actions.

2. Proposal

The complexity of the unit syntax depends heavily on the syntax
of the primitive actions. Though the syntax of some of these
primitive actions has been changed in ALGOL68 during revision,
no effort has been done to simplify the unit syntax at the same
time. In our proposal we show that such a simplification is
possible without many changes to the syntax of the primitive
actions.

Please compare the syntax charts for ALGOL68 and the proposal.
The description method of J.M. Watt, J.E.L. Peck and M. 3Sintzoff
is used but details are left out in both charts where the
proposal changes nothing to the ALGOL68 syntax.

3. biscussion

The syntax of the proposal is simpler than the ALGOL68 one.

Its most interesting feature is the distinction of three levels
in the unit syntax: the right associative level, the formula
and the left associative level.

AB40 p 22

Changes to the syntax of primitive actions:

1+« The identity relation is no longer a balance and it
associates to the right. The right hand side being
a unit, the "nihil" can be brought in the same
category as "jump" and "skip".

2. The syntax of the cast and the selection is the inverse
of the corresponding ALGOL68 syntax. That makes it
possible to use a primary in the cast instead of an
enclosed clause,

The examplen of §1, written in the proposed syntéx:

1]
{1} person s age := 28
{2} person[2] s age
{3} Jim s child (2]
{4} pointer pref int := O

The asymmetry of the identity relation in the proposal is
something one could argue about. Semantically, the identity
relators are symmetric, but almost always a cast is needed
to obtain the desired effect, so the syntax of the complete
construction becomes asymmetric. In the proposal this
asymmetry is frozen with the cast as left hand side:

{ALGOL68} ref node(son of currentnode) :
{proposal} currentnode s son ref node :=

It is as if the declarer influenced the meaning of the
identity relator: "compare two ref node values".

In fact the identity relation is a parasite construction

in ALGOL68. All normal values are compared using operators
‘(equal, not equal). Due to the orthogonal conception of the
modes, the concept "“variable" does not exist in ALGOLG66.

The "value of a variable" is obtained by a coercion (deref-
erencing) which cannot distinguish a "pointer constant®

from a "variable", nor an "indirect pointer constant" from

a "pointer variable". That orthogonallity makes it impossible
to use the same operator e.g. to compare the values of two
integer variables and to compare two pointers to integers.

Editor's Note: It is of course too late to consider this as an actual
modification to ALGOL 68, but it is an interesting example of what might have
been and these points should certainly be kept in mind when designing future
languages. Something similar to the s proposal was indeed considered at the
Fontainebleau meeting of the Working-Group, but was dropped, with regret,

as being too great a charge to the existing language structure.

AB4O p 23

PTOA
oapJ§ Aaeutuad-sq

A".lv
F...u

wmu §

uooas~] do

1IUN=-§ JNT UOD3¥S-3J054 UOTJBTAJDT

1TUN-S =: UOD3S-1J05H{uoTjeRuIISS®

1TUN=-S

uotqae3lIOoUdP]

J9TJTIUSDT -
J0jeJldauad

paso1oua

1BUJOJ

qseol-

Aaeutad-w-

11eohH

Aaeutdd-n 4

301 1SH

Kaeutad-n 4

uot3oatasH| Lueutud

55557

eTnuJo Jj}-{£Aaepuooas]

TTyTU
drys
dun,

{s}

..........LuxwumCﬂuson

atun|

]

[tV
4

I

sodoud

m

vﬂo>f
pssoous~-s |093pJ

Kaeutud=-u

?.v
[+

uoo9s-Mm JOo 3Je)

TTYTU —————{ S}
uooas-J
eTnuIoJ~J
pueasdo do [puedado]

’ uodas=-J {ido}
diys
dung

u&wulu&omucﬂ uLmulnw
3493~S JpT 3J433-3J0S

J1Un=-s =: 3433-1Jos fuorjeuldrsse

11un-s :

29

Laeutad-m 4

ou’!v0000-IPMWQQCﬂUSOL

pasoToua

1eWwJdoJ A
usr3eqouap

J3TJTIUIPT -

1sedlH
1 1Ted}-
90T T3

Kaeuatad)

Bk E:-BEVEN R

4{ uoT309133|t{iaepuooas]|

eTnuJo j} Auetya9l)

N

{uoT3eTa4DTI|

jtunj

sl Tint:/

dw o v

AB 40.5

The Report on the
Standard Hardware Representation
for ALGOL 68

Wilfred J. Hansen
University of Illinois at Urbana-Champaign

Hendrik Boom
Mathematisch Centrum

AB40 p 24

AB40 p 25

This report has been accepted by Working Group 2.1,
reviewed by Technical Committee 2 on Programming and
approved for publication by the General Assembly of the
International Federation for Information Processing.
Reproduction of this report, for any purpose, but only
of the whole text, is explicitly permitted without
formality.

d. Introduction

At its September, 1973, meeting in Los Angeles,
Working Group 2.1 of IFIP created a Standing
Subcommittee for ALGOL 68 Support. The January, 1975
meeting of this Subcommittee in Boston discussed at
length a standard hardware representation and
authorized a Task Force to draft a proposal
incorporating the conclusions of that meeting. An
initial draft was presented to the June, 1975, meeting
of the Informal Information Interchange at Oklahoma
State University. Many improvements and alterations
suggested at that meeting have been incorporated into
this final version. All suggestions were valuable,
even those that served only to stimulate discussion.
Subsequently, this report was accepted by the August,
1975, meeting of Working Group 2.1 in Munich and
forwarded to IFIP.

A standard hardware representation is desirable for
several reasons:

- First, together with the Report*, it provides a
complete definition of a single language. As
implementations have developed their own
solutions to the problems of representation,
there have arisen many related languages that
differ considerably in appearance. To read or
write a program for an alien implementation,
a programmer has been required to make a
considerable mental readjustment of deep
habits. One might argue that no precise
standards exist for natural language
punctuation and typesetting, but the argument

* In this document, "the Report" refers to the Revised
Report:

A. van Wijngaarden, et al., Revised Report on
the Algorithmic Language ALGOL 68, Acta
Informatica, v.5, Fasc. 1-3, Springer-verlag
(Berlin, 1975).

References to it are in the form of "R" followed by a
section number. To avoid confusion, references to
sections in this report are prefixed with "*",

does not apply to artificial languages
intended to be read by machines.

- Second, processors other than compilers may be
defined for ALGOL 68 programs; for example,
macro processors, cross-reference programs,

and print formatters. Such processors may be

used by all implementations only if the

tokens they accept are defined by a standard.

-Third, a single representation convention will
promote portable programming. This document
specifies a minimum character set that every

compiler must accept and the maximum that may
be used in a portable program. Consequently,

program transportation requires only one-to-
one transliteration; the transliterator need
not determine the extent of strings,
comments, and format-texts.

Several goals have been addressed in creating this
standard hardware representation: it should require
only a small, widely available character set*; it
should minimize parsing problems; it (or some subset)

* With the exception of square brackets, the set of
worthy characters is a subset of most versions of
ISO-code, ASCII, and EBCDIC:

ISO Standard 646: 7 bit coded character sets for
information processing interchange. An earlier
version of this standard was considered in
Lindsey, C. H., "An 1SO-code representation for
ALGOL 68", ALGOL Bulletin 31 (March, 1978), pp.
37-68 (corrected 1in AB 32.1.3).

ANSI, USA Standard Code for Information Interchange
(X3.4-1968), American National Standards
Institute (New York, 1968).

ANSI, American Standard Hollerith Punched Card Code

(X3.26-1970), American National Standards
Institute (New York, 1978) {defines a version of
EBCDIC}.

IBM Corp., IBM 1403 Printer Component Descrigsion,
Order no. GA24-3873, 1970 saef1nes the "TN-chain"

version of EBCDIC}.

Hansen, Wilfred J., "A Revised ALGOL 68 Hardware
Representation for 1SO-code and EBCDIC",
UIUCDCS-R-73-607, University of Illinois, Urbana
(November, 1973); revised as "An ALGOL 68

AB40 p 26

AB40 p 27

should be teachable; it should be possible to write
portable programs that process other programs; it
should conform to the Report, existing usage, and usage
in other languages; and, above all, it should be a
practical, congenial means of expressing ALGOL 68
programs. With the exception of three representations
{see *3.7} and the "string break" {see *3.1}, an
implementation following this document is an
"implementation of the reference language" {R9.3.c}.

1. Definitions

Worthy character - one of these sixty characters:

ABCDEFGHIJKLMNOPQRSTUVWIXYZ2
g 123456 Z 8 9
space " # $ % () *+ ,-./:;<=>e1([1_|I

{This document defines a representation of an
ALGOL 68 program as a sequence of worthy
characters and newlines.}

Base character - a "character" available at an
installation. {Each such character is a composite
of some set of marks and codes agreed upon by
local convention. The input to a compiler is a
sequence of base characters.}

{Wwhat I see is that, whereas
there is only one form of
excellence, imperfection
exists in innumerable
shapes....

The Republic, Plato}

Disjunctor - a typographical display feature {R9.4.d},
the start or end of a program text, or any worthy
character other than a letter, digit, or
underscore. {Tags and bold words are delimited by
disjunctors.}

Adjacent, follow, precede - Two character strings are
"adjacent" if there are no intervening characters
or typographical display features. If one string
is said to "follow" or "precede" another, they are
also adjacent.

Hardware Representation for ISO-code, ASCII, and
EBCDIC" (December, 1974).

AB40 p 28

Bold word -~
i) any representation composed of bold-faced
letters or digits in the reference language
{R9.4} {i.e., bold-TAG-symbols and the
representations shown as bold in R9.4.1}, or

ii) a symbol represented by a bold word, or

iii) the characters written for a bold word as
specified below {*3.5}.

Tag - a TAG-symbol {R9.4.2.2.a} {"End of file" is a
tag.}

Taggle - a nonempty sequence of letters and digits.

{As used in *3.5.1, "End of file" has three
taggles.}

2. Representation of ALGOL 68 Constructs

For each worthy character an implementation must
provide a base character different from the base
character for any other worthy character. The mapping
between worthy and base characters should be chosen so
as to minimize confusion while paying due regard to
prevailing usage. {For example, an implementer should
avoid assigning a base character to an unrelated worthy
character and also avoid using a character to represent
something other than that which it represents in the
Report.}

An implementation may augment the worthy characters
with the twenty-six lower-case letters. The two cases
of a letter are equivalent except as provided in *3.1
and *3.5.2. {This equivalence promotes portability;
for example, it prevents distinction between tags that
differ only by the case of one letter.}

The Report specifies {R9.3.b} that a "construct in a
representation language" is obtained by replacing
symbols with their representations. In this document,
a representation is specified for each symbol in terms
of worthy characters. Constructs in the representation
language are encoded for communication and computer
processing by replacing each worthy character with its
corresponding base character and inserting
typographical display features {where permitted}.

AB40 p 29

3. Specific Representations

3.1 String-items

The set of string-items {R8.1.4.1.b} is the set of
worthy characters (as possibly augmented with lower-
case letters) excluding quote and apostrophe but
including the quote-image-symbol and the apostrophe-
image-symbol. The intrinsic value of each worthy
character is itself; the upper- and lower-case versions
of a letter have distinct intrinsic values. The
quote-image-symbol is written as two adjacent gquotes
and its intrinsic value is a quote. The apostrophe-
image-symbol is written as two adjacent apostrophes and
its intrinsic value is an apostrophe. {A single
apostrophe may be used as an escape character in some
implementations.}

An additional typographical display feature, the
"string break", is provided for use exclusively within
string- and character-denotations. It is written as

- a quote, followed by

- one or more typographical display features other
than string break, followed by

- another quote.

{When a string-denotation must be continued to more
than one line, a string break permits the number of
spaces at the end of one line to be indicated and
permits the next line to be indented without
confusion.}

3.2 Other-Pragmat-Items

Any sequence of characters {worthy or otherwise} may
appear as a STYLE-PRAGMENT-item-sequence {R9.2.l.c}
except one containing the sequence {including
disjunctors} which constitutes the representation of
the STYLE-PRAGMENT-symbol itself {because the latter
would terminate the pragment}. An implementation may,
however, further restrict the sequences of characters
allowed in pragmats {but not in comments}.

Four standard pragmat-items are defined: PAGE,
POINT, UPPER, and RES {see *3.2.1 for PAGE and *3.5 for
the rest}. All implementations must recognize these
items at least in the minimal form

STYLE pragmat symbol, item, STYLE pragmat symbol.

Each of these four pragmat-items is written as a
sequence of upper-case letters, and may be preceded or

AB40 p 30

followed by typographical display features. {Note that
in all stropping regimes a pragmat-symbol may be
written as ".PR" followed by a disjunctor.}

3.2.1 Newpage

When the base character representation of a
construct is printed by an ALGOL 68 processor, a
pragmat containing the pragmat-item PAGE causes the
line after the line containing its closing pragmat-
symbol to be printed at the top of a new page {possibly
after appropriate headers}. {The PAGE pragmat is,
however, not a typographical display feature.}

3.3 Typographical Display Features

The typographical display features are space,
newline, and string break. {Newline may be a unique
base character or a physical phenomenon like end of
record. String breaks are allowed only in certain
denotations; see *3.1.}

3.4 Style-TALLY Objects

No representations for any style-TALLY-letter-ABC-
symbols or style-TALLY-monad-symbols {R9.4.a} are
defined by this document.

3.5 Tags and Bold Words

The representation of tags and bold words is
determined by the "stropping regime", of which there b
are three. A new regime is invoked by a pragmat
containing one of the pragmat-items POINT, UPPER, or
RES, and takes effect following the closing pragmat-
symbol. Stropping does not affect the ‘STYLE® of a
representation {so in UPPER and RES, ".PR" matches
"PR"}. {Some rules below require disjunctors in
certain positions. If necessary, these can be obtained
by inserting typographical display features.} {In ALGOL
68, tags are distinct only when the concatenations of
their taggles are distinct. For example, "end of file"
may also be written "endo ffile".}

{"Wwhat did the rug, dog, and fish
have in common?"

"Each was a car p et."

Works, Mach Tartaruca}

AB40 p 31

{Examples are shown with each regime. A few, like
",elIF", illustrate usages that cannot be recommended.
These usages are allowed because they are orthogonal
and they provide a measure of tolerance to unimportant

errors.}

3.5.1 POINT Stropping

Bold words.

- A bold word is written as a point (".")
followed, in order, by the worthy letters or
digits correspondlng to the bold- faced
letters or digits in the word.

A bold word must be followed by a disjunctor.

Tags.

- A tag is written as a sequence of {one or more}
taggles separated by zero or more
typographical display features.

- A taggle is written by writing, in order, the
corresponding worthy letters and digits
optionally followed by an underscore.

- If a taggle does not end with an underscore, it
must be followed by a disjunctor.

{Examples:

Program: .PR POINT .PR .BEGIN .REAL X; X := X~-1 .END
Bolad: .BEGIN, .Real, .elIF, .X1l, .abs
Plain: BEGIN, Real, end of file, end _of file,

X1l, a b, a_ b
Error: .BEGIN , .X 1, .end of file, a b,
a b, a__ b} - -

3.5.2 UPPER Stropping

Tags and bold words are represented as they are in
POINT stropping with the addition of these rules:

- Upper- and lower-case letters may not be
intermixed in a bold word.

- The point may be omitted from an upper-case bold
word if it is preceded by a disjunctor other
than a point, by a lower-case letter, or by a
digit that is not an "upper-case digit". An
"upper-case digit" is one that follows an

upper-case letter or an upper-case digit.

- An upper-case bold word need not be followed by
a disjunctor if it is followed by a lower-
case letter.

- Upper-case letters may be written only in bold
words and character-glyphs {R8.1.4.1.c; these
are constituents of string- and character-
denotations and of pragments}.

{Examples:

Program: .PR UPPER .PR BEGIN REAL x; x := x-1 END

Bold: BEGIN, .abs, X1 {even in "a3X1"}, .a3
{even in“,a3X1"}, OF {even in "reOFz"}

Plain: begin, end of file, end of file, a3 {even
in "a3xX1"}, re {even in "reOFz"™}

Error: REAL_, .real_, X_ij, return_value_END

".aB" is equivalent to ".a B".}

3.5.3 RES Stropping

A "reserved word" is one of the bold words specified
in R9.4.1 as a representation of some symbol. {See the
list in *B. By R9.4.2.2.b, these cannot be redefined
and are thus already reserved in another sense.} In the
RES regime, tags and bold words are represented as they
are in POINT stropping, with the addition of these
rules:

- The point may be omitted from a reserved word if
it is preceded by a disjunctor other than a
point.

- A taggle must be adjacent to an underscore if
its letters and digits correspond, in order,
to those of a reserved word.

{Examples:
Program: .PR RES .PR BEGIN REAL X; X := X-1 END
Bold: BEGIN, .REAL, .Xl1l, Begin, .operator,
.AMODE

Plain: begin_, end_of file, end_of file_ , x1,
AMODE, X I, endo ffile, X_1
Error: .BEGIN_, .X_1}

AB40 p 32

AB40 p 33

3.6 Composite Representations

Where the representation shown in R9.4.1 appears to
be composed of two or more consecutive nonletter marks
{"", =2, =, |z, =2, :/=:}, the representation is the
sequence of worthy characters corresponding to those
marks.

The representation of any NOTION1l-cum-NOTION2-symbol
is the representation of the NOTIONl-symbol followed by
the representation of the NOTION2-symbol. {The
NOTION1l-cum-NOTION2-symbols are the composite operators
mentioned in R9.4.2.2.d,e.}

3.7 Other Representations

Any symbol whose representation in the Report {R9.4}
corresponds to some worthy character is represented by
that character. {There are no representations for the
times-ten-to-the-power-symbol, the plus-i-times-symbol,
or the brief-comment-symbol, but the Report provides
alternate constructs for all cases where these symbols
might be used.}

4. Transput

The transput representations of objects must use
only worthy characters {so that input may be prepared
and output interpreted without reference to an
individual implementation}. The environment enquiries
{R10.2.1} depend on worthy characters as follows:

flip: b
flop: "p"
errorchar: Hahn
blank: non

No value is defined for "null character" by this
document. Since there are no worthy characters for
times-ten-to-the-power-symbol and plus-i-times-symbol,
"E" and "I" must be used instead. The two cases of a
letter are equivalent when they appear in the transput
representation of any value other than one of mode
‘character’ or ‘row of character”’.

As a result of transput and repr, string values may
contain characters that do not correspond to worthy
characters. This document does not define the actions
taken, if any, when such characters are transput.
{Ordinarily, most such characters will simply be read
and written as single characters, just as will an "A".}

{ Appendices

These appendices discuss the hardware
representation, but they are not to be construed as
further specification.

Appendix A. Worthy and Base Characters.

A.l1 Rationale for worthy characters.

A.l.1 Specific Unworthiness

The following characters were carefully considered
as candidates for worthiness, but were rejected for
various reasons:

! - because it may be needed as a base character
for] ' "

\ -~ because it is not in EBCDIC and "E" is an
alternative.

? - no explicit function is assigned in the
Report, so it was omitted to limit the size
of the worthy set.

2 ~ - there are severe difficulties with the
hardware representations of logical not and
tilde: they may be printed as themselves, as
each other, or as circumflex, overline, beta,
Oor even up-arrow.

& - with no monad for not or or, ampersand was

deleted to reduce the set of worthy
characters.

A.l1.2 Specific Worthiness

The following were considered worthy, despite
disadvantages:

| - because it is crucial to ALGOL 68, despite
device problems almost as severe as those for
logical not and tilde.

[] - they are traditional ALGOL characters (but
see *C.2).

% - well-defined meaning and commonly available;
moreover, a short snap quiz determined that
even some experts cannot remember the bold

AB40 p 34

AB40 p 35

alternatives for quotient and modulus.

@ - also well-defined and commonly available.

A.l1.3 Transput Environment Enquiries

Flip and flop were chosen to be letters rather than
digits because the letters have more meaning when these
codes represent Boolean values. Neither a string of
letters nor a string of digits is easy to read as a
representation of a bits value.

The asterisk was chosen as the value of "errorchar"

because question mark was unworthy and asterisk is
traditional.

A.2 Relationships between Worthy and Base Characters.

An important step in developing this standard was to
relate worthy characters to base characters rather than
to specific hardware codes. This has several
advantages:

It avoids restricting the standard to any
specific character code.

- It makes the implementer responsible for
device-dependent decisions, such as the
representation of vertical bar (which may be
printed on various devices as any one of "|",
nyw, nlw_ 7, space, U, or 8).

- By eschewing diphthongs (e.g., "(/" for "[") it
facilitates transportation by strict
transliteration.

- It specifies a standard external appearance of

programs rather than trying to specify a
standard internal appearance.

A.2.]1 Disallowed Relationships.

If this report specifies one or more representations
for some symbol, an implementation should not provide
any additional representation for that symbol in the
following situations:

a) where there is an existing special character
representation for the symbol, or

b) where the new representation would be another

bold representation for a symbol that already
has a bold representation.

Situation (b) would not increase expressive power,
but would increase the potential for confusion.
(However, in a variant language {R1.1.5.b}, alternative
bold representations might be appropriate.)

Situation (a) would introduce confusion and
ambiqguity in transliteration of strings. For example,
if "$" and "?" both represent the percent-symbol, there
is no simple transliteration for "?" in a string.

To avoid similar ambigquity and transliteration
problems, implementations should not provide:

- additional style-TALLY-symbols;
- dipthongs specific to the ALGOL 68 environment.
(Thus " (/" should be neither a style-ii-sub-symbol
nor a diphthong for "[".)

A.2.2 Permitted relationships.

If system software commonly uses a diphthong for
some representation -- such as the diphthong proposed
for colon on some systems -- an ALGOL 68 compiler may
have no choice but to accept it as a single character.
No problem arises as long as the substitution is
universal and unambiguous inside and outside strings.

An implementation may specify two or more separate
base characters to represent some one worthy character.
This may be necesssary, for example, if some device
lacks "|" and "!" is to be allowed in its stead. The
two base characters should be treated as equivalent
everywhere except within strings and on program
listings, where each should represent itself. When a
program is transported it may be necessary to
transliterate both base characters to one new
character.

Difficulty arises only when trying. to export a
program that has attempted to utilize the distinction
between the two characters. Such a program is not a
portable program.

AB40 p 36

AB40 p 37

A.3 Super-set Character Sets.

A.3.1 Escape Character.

Some implementations have defined an escape
convention for representing extra string-items. This
standard does not prescribe any such convention but, if
one is used, the apostrophe should be the escape
character.

A.3.2 Admissibility of Other Characters.

After adapting the local characters to the worthy
characters, an implementer may find he has "unused base
characters" that do not map to worthy characters. For
each such character C the implementer may choose from
the following interpretations:

a) Unused. C is erroneous except possibly inside
pragments.

b) As in the Report. If C appears as a
representation for some symbol S in the
Report and there is no worthy representation
for S, then C - if allowed at all - should be
a representation for S. Thus, "\", "»", ".",
uon’ ||¢n’ and u&u’ u_"ﬂ" ll~ll' llTll' and the -
other unworthy operators in R9.4.1.c may be
used only to represent themselves (unless a
desperately small character set forces their
use as worthy characters).

c) An unworthy representation. C may represent
some symbol for which no nonletter worthy
representation is given. For example, "2?"
could be a skip-symbol.

d) Style-TALLY-monad-symbol. For example, if "?2"
were not used as an unworthy representation
as in (¢), it could be a monad. 1If this
option is chosen, C should look like an
operator. For example, "{" might make a poor
monad.

e) Style-TALLY-letter-ABC-symbol. Care should be
taken that C look somewhat like a letter
rather than an operator.

f) A typographical display feature. Such an
additional feature should usually be ignored
in strings (unlike space).

In addition to one of the above, C may be permitted

as an other-string-item.

Appendix B. Bold Symbols and Plain Tags.

B.1l Goals of Stropping Rules.

In addition to the goals listed in *@, the design of
the representations for bold symbols and plain tags was
motivated by the following criteria.

a) There should be a small number of stropping
regimes to minimize the size of token
scanners.

b) For compatibility with North American
expectations, at least one regime must be
some form of reserved words.

c) Numerous fortunate installations have two cases
and desire some form of case stropping.

d) For the sake of tradition, the standard must
include at least one regime where all bold
words must be stropped.

e) The standard should reduce the possibility of
error and enhance the probability of
detecting those errors which do occur.

f) Some means of explicit stropping should apply
in all stropping regimes so that, among other
reasons, pragmat-symbols may be written in a
regime-independent manner.

g) Because it is allowed by the Report, there must
be some way to represent a tag or taggle that
has exactly the same letters as a reserved

' word.

B.2 List of Reserved Words.

In the RES regime, all bold words listed in R9.4.1
are reserved. There are sixty-one:

at, begin, bits, bool, by, bytes, case, channel,
char, co, comment, compl, do, elif, else, empty,
end, esac, exit, false, fi, file, flex, for,
format, from, go, goto, heap, if, In, int, is,
isnt, loc, long, mode, nil, gg, of, op, ouse, out,

ar, pr, pragmat, prio, proc, real, ref, sema,
short, skip, string, struct, then, to, true,
union, vo1s, while. -

AB40 p 38

AB40 p 39

Additional bold words may appear in section 9.4.1 of
a document defining a superlanguage {R2.2.2.c} or
variant {Rl1.1.5.b} of ALGOL 68. These words should be
reserved in an implementation of the modified language.
(Programs using them are not very portable anyway.) If
a modified language does not give a meaning to some
word in the above list, it should nonetheless remain
reserved. Only thus can users of a sublanguage be
assured of compatibility with implementations of the
full language.

B.3 Other Stropping Regimes.

For compatibility with existing installation
practice, implementations may implement stropping
regimes in addition to those provided by the standard.
However, such additional regimes should be invoked by
pragmat-items distinct from those in *3.5. All
modifications to the defined regimes -~ including
extensions -- should be avoided because they would
inhibit error detection and decrease portability.

B.4 Inside Pragmats and Strings.

To simulate stropping and taggle concatenation,
points and underscores may appear in pragments and
strings. This may improve the readability of pragments
by distinguishing between natural language words and
those from ALGOL 68. However, when appearing as
string- or comment-items, points and underscores
represent themselves and do not indicate stropping.

B.5 Classification of Points.

The following properties of points hold in correct
programs. Implementers may find them convenient.

a) Inside a format-text {10.3.4.1.1l.a}, but
outside any constituent unit or enclosed-
clause, a point is a strop if and only if it
is followed, first, by one of "co", "pr",
"comment", or "pragmat", and next by a
disjunctor.

b) A point is not a strop if it is a character-
glyph {R8.1.4.1.b}. {Inside a pragmat an
implementation may treat a point as a strop.}

c) Elsewhere a point is a strop if it is followed
by a letter.

d) A stropped word is always bold.

Appendix C. Portable Programming.

Appendices *A and *B provide considerable latitude
for extension of this standard in response to local
conditions; however, no implementation will have all
these extensions. This appendix discusses the maximum
facilities that may be safely employed in a portable
program.

C.1 Character Set Descriptions.

The standard is defined in terms of worthy
characters in order that program conversion will
require only a transliteration of character codes. To
facilitate the debugging of such a routine, a program
publisher should provide with published programs a file
containing the following:

- one or more lines, as necessary, containing all
the characters used in the program. This
should begin with all of the worthy
characters, in the order in which they appear
in *1;

- a description of each character.

Each implementer should provide such a file
describing the implemented character set.

C.2 Sub- and Bus-symbols.

Nonstandard implementations sometimes restrict the
representations for sub- and bus-symbols. For a
portable program, two schemes are possible.

a) Use only square brackets. This scheme is
preferable because it is the one most likely
to be widely portable. Note that every
implementation is required to provide base
characters for the square brackets, even
though the characters provided may not
resemble brackets.

b) Use parentheses, but follow this restriction:
No local-sample-generator {R5.2.3.1.b} may
begin with a style-i-sub-symbol. {This can
always be achieved by inserting a local-
symbol.} {Any sublanguage with this
restriction is easier to parse.}

AB40 p 40

AB40 p 41

All implementations of this report will perforce
accept programs written according to both of the above
" schemes.

C.3 UPPER Case.

Some implementations will be unable to support two
alphabetic cases. Users with such implementations can
usually import programs by converting all the letters
to the single case; this succeeds because the standard
specifies that both cases of a letter are equivalent in
all but two contexts. The first such context is
strings; however, as long as the string is intended
only for printing, little damage will be caused by
converting its letters to a single case. Programmers
should be wary of any program whose correct execution
depends on the fact that there are two cases of letters
in a string.

The second context where case distinction is allowed
is in UPPER stropping. A program so stropped is
readily converted to POINT stropping, if every bold
word is preceded by a blank and followed by a
disjunctor. At its simplest the conversion changes
"blank, upper-case-letter" to "point, letter", but this
may unduly modify the contents of strings. With more
complex logic, even programs without blanks before
UPPER-stropped bold words can be translated to some
other stropping regime, by the recipient. There is,
however, the risk that the line length may be increased
by the insertion of stropping points or extra
disjunctors. It is possible that this may require that
some lines be broken if the receiving installation
imposes a maximum line length.

C.4 Newlines in Strings.

Some software environments routinely strip trailing
blanks from the end of each record; others pad all
records to a fixed length; others perform curious
mixtures of these procedures. 1In either case, the
number of blanks in a transported string may change if
the string includes a newline. To avoid such changes,
newlines in strings should appear only in string
breaks.

C.5 Other Characters.

A portable program should be written entirely in
worthy characters, because only these characters are
available in all implementations. With care, however,
it is occasionally permissible to use unworthy
characters. For example, unworthy characters can be
used in messages intended solely for output.
Transliteration of such a character may hinder
interpretation of the output, but it will not otherwise
affect execution of the program. 1In particular, "2"
and "&" are available in most character sets, so they
will cause little difficulty if used within strings.

In any case, if unworthy characters are used,
sufficient explanation must be provided to enable
correct adaptation of the program to a new character
set.

C.6 Character Code Dependence.

Use of repr should be severely restricted. Programs
should not depend on the particular character code used
by the implementation. This can be accomplished with
cautious use of the environment enquiry abs. For
example, an array, "char type", to be used to
distinguish between letters, digits, and all other
characters, could be defined and initialized as
follows:

[@ : max abs char] int char type;
int kletter = 1, kdigit = 2, kother = 0@;
for i from 0 to max abs char

do
~ char type[i] := kother
od;
for i to 19
ol
char type[ggg "g123456789"[(i])] := kdigit
od;
for i to 52
&

char typel[abs "abcdefghijklmnopgrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" [i]]

{This succeeds even if the receiving installation lacks
lower case, because the lower-case letters will have
been translated to upper case.}

AB40 p 42

AB40 p 43

C.7 Portability of Compiler Character Codes.

Four worthy characters -- "|", " ", "[", and "]" =--
are often coded differently, even at installations
which nominally use the same character code.
Implementors should consider whether to provide means
enabling each installation to choose codes for these
characters for use in error messages, machine-~readable
documentation, programs, and normal transput.

C.8 Reserved Words.

Although not allowed by this report, some
implementations may have reserved word lists that
differ from the list in *B. A portable program using
RES stropping should ignore the local list by
explicitly stropping words not on the official list and
placing underscores adjacent to plain taggles that
appear on the list.

C.9 Minimum Form Standard Pragmats.

Because some implementations may have special syntax
for pragmats, portable programs should employ only
minimum form pragmats:

pragmat-symbol, standard-item, pragmat-symbol.
where "standard-item"™ is PAGE, RES, UPPER, or POINT.
Implementers should provide PRAGMATS OFF {R9.2} (and

perhaps PRAGMATS ON) to control interpretation of
pragmats.

C.10 "PORTCHECK" Option.

Despite good intentions, a programmer may violate
portability rules by inadvertently employing a local
extension. To guard against this, each implementation
should provide a PORTCHECK pragmat option. While this
option is in force, the compiler prints a message for
each construct that it recognizes as violating some
portability constraint.

}

