ISSN 0084-6198

Algol Bulletin no. 39

FEBRUARY 1976

CONTENTS PAGE
AB39.0 Editor's Notes 2
AB39.1 Announcements
AB39.1.1 The Revised Report on the Algorithmic Language
ALGOL 68 4
AB39.1.2 Conference Proceedings: 1974 International
Conference on ALGOL 68 4
AB39.1.3 Conference Proceedings: 1975 International
Conference on ALGOL 68 4
AB39.1.4 Fourth International Conference on the Implementa-
" tion and Design of Algorithmic Languages 4
AB39.1.5 A68 - III (informal Information Interchange) 5
AB39.1.6 The Progressive Construction of Mode~Trees In ALGOL 68 5
AB39.3 Working Papers
AB39.3.1 C.H. Lindsey, Specification of Partial Parametriz-
ation Proposal 6
AB39.3.2 B.A. Wichman, A summary of the replies to the
ALGOL 60 questionnaire 10
AB39.4 Contributed Papers
AB39.4.1 I.F. Currie, Modular Programming in ALGOL 68 13
AB39.4.2 C.H. Lindsey, Proposal for a Modules Facility
in ALGOL 68 1 20
AB39.4.3 L.G.L.T. Meetens, A Note on Integral Division 30
AB39.5 ’
AB39.5.1 Revised ALGOL 68 Report ERRATA-4 33

Important notice to | [BRARIANS

If this copy of the ALGOL BULLETIN is to be placed in a library, please
first detach pages 33-38 and put them with your copy of the '""Revised Report
on the Algorithmic Language ALGOL 68" which was sent to you as a Supplement
to AB36 (these are in addition to the similar errata which you received with

AB37 and AB38). Better still, modify your copy in accordance with all the
sets of errata.

AB39p 1

The ALGOL BULLETIN is produced under the auspices of the Working Groﬁp
on ALGOL of the International Federation for Information Processing (IFIP WG2.1,
Chai;man Professor J.E.L. Peck, Vancouver).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin

do not necessarily reflect those of IFIP and IFIP undertakes no responsibility

for any action which might arise from such statements. Except in the case of

IFIP documents, which are clearly so designated, IFIP does not retain copyright

authority on material published here. Permission to reproduce any contribution

should be sought directly from the authors concerned. No reproduction may be
made in part or in full of documents or working papers of the Working Group
itself without permission in writing from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been
provided by Professor Dr. Ir. W.L. Van der Poel, Technische Hogeschool, Delft,

The Netherlands.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $7 per three issues, payable in advance. Orders and remittances
(made payable to IFIP) should be sent to the Editor. Payment may be made in any
currency (a list of acceptable approximations in the major currencies will be
sent on request), but it is the responsibility of each sender to ensure that
cheques etc. are endorsed, where necessary, to conform to the currency control
requirements of his own country. Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor, since it is
not the policy of IFIP that any person should be completely debarred from
receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C.H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
England.

Back numbers, when available, will be sent at $3 each. However, it is
regretted that only AB32,. AB34, AB35, AB37 and AB38 are currently available. The
Editor would be willing to arrange for a Xerox copy of any individual paper to

be made for anyone who undertook to pay for the cost of Xeroxing.

AB39 p 2
AB39.0 EDITOR'S NOTES

It is over a year since our last issue, and my apologies for that.
However, you will see that the bulk of this issue is taken up with matters
arising from the last Working Group meeting and with other official business.
Whilst the publication of such material is an important function of the
ALGOL Bulletin, it is not its only one and it is our desire to publish
contributed papers, letters, opinions, reports, algorithms, etc., etc. on all
aspects of Programming Languages (both existing and projected). During the
past year, such contributions have been conspicuously absent. The answer is

obvious and lies entirely in your hands, dear readers.

That Report, at last!

The Revised ALGOL 68 Report was published in December in Acta Informatica
Vol. 5, parts 1, 2 and 3 (see announcement in this issue concerning availability
of reprints). It is due to be published also in SIGPLAN notices and translations
into Russian and into German are underway. It is also probable that an edition

in Braille will be produced by the Mathematisch Centrum, Amsterdam.

WG2.1 meeting, Munich, August 1975

This departed from the usual pattern of Working Group meetings insofar
as the bulk of the time was taken up with an Informal Conference with presented
papers. The aim was to survey the whole field of Algorithmic Languages in
order to identify those areas in which the Working Group could most usefully
employ its talents in the future. The same format is likely to be adopted
at the next meeting, which is scheduled to be held in France in August 1976.
The papers given at Munich, together with the discussions, are being edited by
Steve Schuman and will be distributed, courtesy of I.R.I.A., as a Supplement to
this Bulletin.

As well as looking forwards to its future responsibilities, the Working
Group also took some important decisions with regard to its past and present

work:

Modified ALGOL 60

A Revised version of the "Commentary on the ALGOL 60 Revised Report"
(AB38.3.1), by R.M. De Morgan, I.D. Hill and B.A. Wichman, was presented to
the meeting, and it was agreed that it should be published as an IFIP document.

See the article by Brian Wichman in this issue for further details.

Taken together with the Revised Report, the new Supplement defines the
language '"Modified ALGOL 60" (which I suspect will soon become abbreviated to
"ALGOL 60 M"). It has been offerred for publieation to the three journals

AB39 p 3

which published the original Revised Report. I hope to publish the complete
Report obtained by elaborating the Supplement in a future issue of the ALGOL
Bulletin.

ALGOL 68 Sublanguage

A draft specification for an ALGOL 68 Sublanguage (see AB37.4.4 for an
earlier draft - fortunately the present version is much more readable than that
one) was presented by P.G. Hibbard and, after a few minor changes, was released
for publication as an IFIP document. Peter Hibbard is to prepare it for
publication, but his recent removal to Carnegie-Mellon University has introduced

some delay into the schedule.

The Sublanguage is intended for easy implementation on minicomputers.
Implementations corresponding to the earlier draft exist on a Modular 1 at
Liverpool and on a 370 (some mini!) at Durham. The latest version is being

implemented on a PDPll at Carnegie—Mellon.
I guess this Sublanguage is going to become known as "ALGOL 68 S'".

Hardware Representation
ry

A draft specification for a Standard Hardware Representation for ALGOL 68,

prepared under the supervision of the ALGOL 68 Support Subcommittee, was presented
by H.J. Boom and W.J. Hansen. This aims to facilitate portability of ALGOL 68
source texts by fixing the stropping conventions and by adhering to a minimal

set of "worthy" characters. This also was released for publication as an IFIP

‘document, and it will appear in the next issue of the ALGOL Bulletin.

Any actual implementer who is in urgent and genuine need of advance
information on this topic should write to H. Boom, Mathematisch Centrum,

2e Boerhaavestraat 49, Amsterdam for a copy of the latest Draft.

Subcommittee on ALGOL 68 Support

This subcommittee met for three days in Munich, prior to the main Working
Group meeting. Topics discussed included partial parametrization, hardware

representation (see above), modules and pre-compilation, and modals.

On partial parametrization, they approved a document which appears in this
issue (AB39.3.1). Note that this has only a semi-official status. It is not
defined as part of ALGOL 68, but is offerred as a suggestion to implementers

who require a language feature of this nature.

On modules and pre-compilation, there were two schools of thought - "Top
down" and "Bottom up". Two papers in this issue (AB39.4.1 and 39.4.2) present
the two sides of the argumeﬁt. A working party has been appoinped to examine

the pros and cons further, and to see whether a system embodying both features

would be appropriate.

AB39 p 4

AB39.1 Announcements

AB39.1.1 The Revised Report on the Algorithmic Language ALGOL 68

Reprints of the Acta Informatica edition will be available from Springer-
Varlag sometime in March, at a price of Dm 24. A certain number will also be
available, hopefully during February, from the Mathematisch Centrum, 2e
Boerhaavestraat 49, Amsterdam, at HF1 25.

AB39.1.2 Conference Proceedings : 1974 International Conference on ALGOL 68

University of Manitoba, Winnipeg June 1974, Editor : Peter R. King.
Copies of these proceedings may be obtained from Utilitas Mathematica Publishing
Inc., P.0. Box 7, University Centre, University of Manitoba, Winnipeg, Manitoba,
Canada R3T 2N2. The price is $ 14.00 (Canadian). The 320 page volume includes
invited addresses by I. Currie, P.G. Hibbard and R. Uzgalis as well as nineteen

other contributed papers and a written record of the discussion periods.

AB39.1.3 Conference Proceedings : 1975 International Conference on ALGOL 68

Oklahoma State University, Stillwater, June 1975.
The Conference was well-attended by about sixty registrants, and had about
thirty presentations during the three days. Copies of the proceedings may be
obtained from G.E. Hedrick, Oklahoma State University, Department of Computing
and Information Science, Stillwater, Oklahoma 74074, U.S.A. The price is
U.s. § 12.00.

AB39.1.4 Fourth International Conference on the Implementation and Design of

Algorithmic Languages

To be held June 14-16, 1976 at New York University, Courant Institute of
Mathematical Sciences. This Conference will be held under the auspices of the
Algol Informal Information Intefchange. Previous conferences have concentrated
on the ALGOL 68 language, but many related areas have been covered and the
forthcoming conference will have a broader scope covering algorithmic languages

in general.

In addition to presentation of invited and submitted papers on aspects of
this area, there will be a series of tutorial sessions covering topics including
the following: The PL/I Basis/I definition, The SETL language. Inquiries may
be addressed to the Program Committee Chairman: Robert B.K. Dewar, New York
University, Courant Institute of Mathematical Sciences, 251 Mercer Street,

New York 10012, U.S.A. Abstracts of papers intended for inclusion in the
conference should be sent to the above address no later than April 1, 1976.
Notices of acceptance will be mailed by May lst, 1976. There will be a

registration fee of § 35.00.

AB39 p 5

AB39.1.5 A68 - III (Informal Information Interchange)

There are currently about 120 members of this organisation, many of them
being active implementers. Currently, a questionnaire is being circulated to
establish the progress and usage of the various implementations under way. An
annual conference is organised (see separate announcement for details). A
computerised bibliography is maintained and a Repository of ALGOL 68 related
papers and technical reports is kept in tﬁe Computer Science archives at UCLA
(photocopies available at about $ 0.05 per page). Items for inclusion in the
bibliography and spare copies of Reports etc. for depositing in the Repository

are always welcome.

Further details from: R. Uzgalis, Computer Science Department, School of

Engineering and Applied Sciences, U.C.L.A., Los Angeles, California 90024, U.S.A.

AB39.1.6 The Progressive Construction of Mode-Trees in ALGOL 68

Ph.D. Thesis by G.S. Hodgson, University of Manchester, England. Jan. 1975,
174p. Microfiche copy available from C.H. Lindsey, Department of Computer Science,
University of Manchester, Manchester M13 9PL, England, £0.80 (or $ 2.00 - dollar

bills preferred to cheques).

"This thesis describes the progressive construction of mode-trees Representing
ALGOL 68 modes. Intermediate Incomplete Representations are permitted until the
full Representations can be determined. The influence of coercion on the method

of Representation of modes is indicated.

"We describe an Equivalence Algorithm for ensuring that such Representations
(or any parts of such Representations) are Unique. This is essential for the
subsequent comparison of modes to be straightforward. Also given is a predefined
Internal-Ordering for the component modes of a union. Separately compiled

segments or programs may then be handled simply."

Also, still available, "The Transport Section of the Revised ALGOL 68
Report" by R.G. Fisker (see AB37.1.3), £0.40 (or $ 1.00).

AB39 p 6
AB39.3.1gpecification of partial parametrization proposal.

C.HeLindsey (university of Manchester)

The following specification has been released by the IFIP
working Group 2.1 Standing subcommittee on ALGOL 68 Support,
with the authorization of the working Group.

This proposal has been scrutinized to ensure that
a) it is strictly upwards-compatible with ALGOL 68,
b) it is consistent with the philosophy and orthogonal
framework of that lLanguage, and
c) it fills a clearly discernible gap in the expressive
power of that LlLanguage.

In releasing this extension, the intention is to encourage
implementers experimenting with features similar to those
described below to use the formulation here given, so as
40 avoid proliferation of dialects.

{{Although routines are values in ALGOL 68, and can therefore be
ylelded by other poutines, the practical usefulness of this facility
is Limited by scope restrictions. Consider:

proc f = (peal x) proc (peal) peal: (ceal y) peal: x + y;
pcoc (peal) peal g := T (3);
X := 0 (4)

This attempts to assign to g the routine "add 3". It does not work
because the body of the routine is still fundamentally the routine-text
(ceal y) peal : x + y which expects to find the value x (i.e. 3) on the
stack in the form of an actual-parameter of f, and by this time f is
finished with and its stack Level has disappeared., The problem arises
whenever a routine-text uses identifiers declared globally to itself
and the Limitation is expressed in the Report by making the scope of a
routine dependent on its necessary environ (7.2.2.C). Here is an
attempt at functional composition which fails to work for the same
reason:

peoc compose = (ppoc (ceal) rceal f, 9) proc (peal) peal:
(ceabl x) peak: f (g (x));
peoc (peal) ceal sex = compose (sart, exp)

clearly, if the restriction 1s to be Lifted, a poutine value has
to have associated with it copies of these global values. unfortunately,
their number is in general indeterminable at compile time, and so the
implementation of such values must be similar to that of multiple
values referred to by flexible names (2.1+3+4.f) requiring, in most
implementations, the use of the heap.

In this variant, all the intended global values appear to the
routine-text as its own formal-papameters. At each call, some or alLl of
these papameters are provided with actual values, resulting in a poutine
with that number of parameters fewer., Ultimately (possibly after
several calls) a routine without parameters is obtained and, if the
context so demands, deproceduring can now take place. Thus, all calls in
the original language turn out to be parametrizations followed by
immediate deproceduring, but their effect is the same. Here are
some examples:

AB39 p 7

1) peoc T = (peal x, y) peal: x + y;
proc (ceal) peak 9 := T (3,);
X =0 (4) #or x :=Ff (3,) (4) #
2) peogc compose = (ppoc (peal) peal f, g, peal x) peal: T (g (x));
peoc (peal) peal sex = compose (sart, exp,
3) op t = (prec (ceal) peal a, int b) proc (peal) ceak:
(Cproc (peal) ceal a, int b, rpeal p) peal:
(peal x := 1; 1o b do x #:= a(p) od; x)) (a, b,);
peal theta; print ((cost2)(theta) + (sint2)(theta)) }}

{{A& routine now includes an extra Locale,}}
2¢1+.3.5. ROuUtines

a) A "poutine" is a value composed of a poutine=text {5.4.1.1.2,b},
an environ {2.1.1.1.C} and a Locale {2.1.1.1.b}. {The Locale
corresponds to a 'DECSETY' reflecting the formal-parameters, if any,
of the routine-text.}

b) The mode of a routine is some 'PROCEDURE'.

c) The scope of a routine is the newest of the scopes of its environ
and of the valuyes, if any, accessed {2.1.2.c} inside its Locale,

{{A routine-text ylelds the new style of routine.}}
5.4.1.2. Semantics

The yield of a proutine~text T, in an environ E, is the routine
composed of
(L) T,
(11) the environ necessary for {7.2.2.0} T in E, and
(iii) a Locale corresponding to 'DECs2' if T has a declapative-
defining-new-DECS2-bpief-pack, and to 'EMPTY' otherwise.

{{Most of the remalniny changes to the Report needed to incorporate
this facility are in section 5.4.3 (calls).}}

5¢4.3. Calls (with partial parametrization)

{A call is used to provide actual-parameters to match some or all
of the formal-parameters of a routine. it yields a routine with
correspondingly fewer formal-parameters or with none at all, in
which case the yield is usually subject to deproceduring (6.+3).
Examples:

y :=8in (x) .
PROC REAL ncossini = (p | ncos | nsin) (i) .
print ((set char number (, 5), x)) .}

5¢4.3.1 Syntax

A) PARAMSETY :: PARAMETERS ; EMPTY.

AB39 p 8

a) procedure yielding MOID NEST call{5D} :
meek procedure with PARAMETERS1 yilelding MOID NEST PRIMARY{5D},
actual NEST PARAMETERS1 leaving EMPTY{c,d,e} brief pack.
b) procedure with PARAMETERS2 ylelding MOID NEST call{5D} :
meekK procedure with PARAMETERS1 yieLding MOID NEST PRIMARY{5D},
actual NEST PARAMETERS1 Leaving PARAMETERS2{c,d,€e,T}
brief pack,.
¢) actual NEST PARAMETER PARAMETERS leaving
PARAMSETY1 PARAMSETY2{a,b,cC} :
actual NEST PARAMETER leaving PARAMSETY4{d,e},
and also{94f} token,
actuyal NEST PARAMETERS Leaving PARAMSETY2{c,d,€}.
d) actual NEST MODE parameter Leaving EMPTY{a,b,C} :
stronyg MODE NEST unit{32d}.
e) actual NEST PARAMETER lLeaving PARAMETER{a,b,C} : EMPTY.

)+ actual MODE parameter :

actyal NEST MODE parameter Leaving EMPTY{d}.
g)e dummy parameter :

actuyal NEST PARAMETER Leaving PARAMETER{€}.

{Examples: .

a) set char number (stand out, 5)
b) set char number (, 5)

c) ,5
d) 51}

5ed4e3.2. Semantics

a4) The yield w of a call ¢, in an environ E, is determinec as
follows:

. Let R {2 routine} and V1, «.. , ¥n be the {collateral} yields of
the PRIMARY of C, in E, and of the constituent actual- and dummy-
parameters of C, in an environ E1 establlshed {Locally, s€e 3.2.2.b}
around E, where the yield of a dummy-parameter is "absent";

. W 1s {the poutine which is} the yield of the "papametrization® {a2}
of R with Vi, eee , ¥YN;

. except where C 1s the constituent call of a deprocedured=-to-MOID~
call {6.3.1.a3}, it is required that w be not newer in scope than E
{thus, pcoc (chac, sicipg) bogl cs = chap in string (., Loc ipt,)
is undefined but q := char in string ("A", Loc int, s) is not}.

az) The yield w of the "napametrization® of a routine RO with values
V1, eee » Vn 1s determined as follows:
. Let TO, EO and LO be, respectively, the routine-text, the environ
Qnd the Locale of RO, and Let LO correspond {2.1.1.1.b} to some
DECSQ " ;
. Let L1 be a new Locale corresponding to 'DECS0', and Let the value,
if any, accessed by any 'DECO' inside L0 be accessed also by that
'DECO* inside L1;
. Let 'DECS1' be a sequence composed of all those 'DECO's enveloped
by 'DECSO' which have not {yet} been made to access values inside L1,
taken in their order within 'DECSO';
For‘ i = 1’ oo 9 n,
1f vi is not absent {see a1},
then the i-th 'DEC1' enveloped by 'DECS1' is made to access Vi
inside L1;
{otherwise, the i-th 'DEC1' still does not access anything;}
. W is the routine composed of TO, EO anc L1.

AB39 p 9

{A routine ma% be parametrized in several stages. Upon each occasion
the yields of the new actual-parameters are made to be accesgsed inside
its lLocale and the scope of the poutine becomes the newest of its
original scope and the scopes of those yields.}

b) The yield v of the "calling" of a routine RO in an environ E1 {see
5¢4.2.2 and 6.3.2} is determined as follows:

« Llet TO, EO and LO be, respectively, the routine-text, the environ
and the Locale of RQ;

« Let E2 be a {newly established} environ, newep in scope than E1,
composed of EQ and LO {E2 is Local};

.« VW is the yield, in E2, of the unit of TO.

{Consider the followiny serial-clause:
PROC samelson = (INT n, PROC (INT) REAL f) REAL :
BEGIN LONG REAL s := LONG 0;
FOR 1 TO n DO s +:= LENG T (i) t 2 oD;
SHORTEN long sgrt (s)
END;
y s= samelson (m, (INT j) REAL : x1 [jl).
In that context, the Last deprocedured-to-real-call has the same
effect as the deprocedured-to-real-routine-text ins
y := REAL : (
INT n = m, PROC (INT) REAL f = (INT j) REAL : x1 [i];
BEGIN LONG REAL s := LONG 03
FOR 1 TO n DO s +:= LENG f (i) t 2 oOD;
SHORTEN Long sgrt (s)
END).
The transmission of the actual-parameters is thus similar to the
elaboratlon of ldentity-declarations (4.4.2.a); see also establishment
(3.2.2.b) and ascription (4.8.2.a).}

{{1iinor changes are required at other places in the Report.}}

{{The third bullet of 5.4.2.2 (semantics of formulas) is replaced by}}
« Let R1 be {the routine which is} the yield of the parametrization
{5e4.3¢2.a2} Oof R with V1, ees , VN; _

« W 1is the yield of the calling {5.4.3.2.b} of R1 in E1;

{{504-402003.39 By 10.3e441.2.C and 1003.4.902 must be mOdlfled to
show that the poutines there created are composed, additionatly,
from a vacant Locale {2¢1e1+1sb}.}}

AB39 p 10

AB39.3.2 A Summary of the Replies to the ALGOL Bulletin questionnaire

B. A. Wichmann

Sixteen replies were received, twelve from implementors and four from
interested users. For each of the fifteen features, they were asked (a)
does your implementation already include this feature, (b) would the
implementation be invalidated by the change, (c) do you approve of the
proposed change, (d) if the proposed change were made official, is it
probable that your implementation would be brought into line? The summary

is as follows:

Item (a) (b) (c) (d)

number already invalidate approve change
1 9Y 5N : (0)'¢ 12N l6Y ON : 1Y 3N
2 7Y JN : 2Y 10N : - 15Y IN : 1Y 5N :
3 6Y 8N 1y 10N 14Y 2N 1y 5N :
4 8y 5N : 5Y 6N 13Y 2N (0)'4 4N
5 1y 138 : 10Y 3N : 9Y 7N 1y 8N :
6 10Y 4N 4Y 7N 11Y 3N : 2Y IN
7 12Y 3N : 1Y 1IN 16Y ON : 3y ON :
8 12Y 3N : 2Y 1IN 15Y IN 1Y ON
9 13Y 2N 1Y 12N l6Y ON : 1Y 2N :
10 2Y 13N : 7Y 5N 5Y 1IN 1Y N
11 5Y 8N : 4Y N 9Y 5N : 1y 7N
12 14Y IN : oY 13N : 15Y IN : 1y 1IN :
13 2Y 1IN 5Y IN 14Y 2N 3Y 6N
14 2Y ION : 8y 4N 6Y 8N : 1Y N
15 2Y 1IN 8Y 5N 9Y 6N : 1Y 7N

Number of questionnaires 16

Hence there was unanimous approval for static own and comments including
characters (items 1 and 7). There was unanimous approval for removing
integer labels (item 9) even though it has been implemented. Similarly,
substantial approval was given fo a number of items which would invalidate
only a small minority of systems. In this category are: only fixed bounds
to own arrays (item 2), own variables initialised to zero or false (3),
controlled variable to remain defined on exit (6), strings to consist of
characters rather than ALGOL basic symbols (8), complete specification of
formal parameters (12), environmental enquiries (maxreal, minreal, maxint
and epsilon, item 13). This leaves six items upon which opinions were
divided.

AB39 p 11

4. step expression evaluated once per loop.
This is an issue upon which views have differed for many
years. The formulation proposed has approval from all but

two replies. It is relatively efficient and simple to define.

5. Controlled variable cannot be subscripted.
The majority approved of this change in spite of the fact
that only one implementor said he had the feature. A
majority of the working group favours this change, and hence

Modified ALGOL 60 excludes subscripted control variables.

10. <integer>t<negative integer> undefined.
We were.perhaps a little too radical here but the formulation
has the advantage of not requiring a change in the subsets.
An alternative formulation similar to the one in the ECMA
subset was suggestedbut WG2.1 decided to retain the proposal
in the ALGOL Bulletin.

11. goto undefined switch designator undefined.
Again a majority approved although a minority of compilers
contained this feature (according to the replies). WG2.1

approved of this change in a vote taken at Breukelen (1974).

14. IFIP input/output.
These do not seem to be much liked. However, many more
approved of them than had them in their implementation. As
a simple, rudimentary system rather than a complete system
there does not seem to be any alternative. There appeared
to be a misunderstanding that we were proposing this as a
complete I/0 system. We are not, but merely providing a

basic system from the existing IFIP procedures.

15. Additional procedures outterminator, fault and stop.
Again a majority approved in spite of their absence in

current systems.

It would be unwise to read much more than this into the replies since

some inconsistencies exist.

At the last WG2.1 meeting at Munich, it was decided that after various
amendments had been made, the document should be published as a '"Supplement
to the ALGOL 60 Revised Report'". This supplement proposes changes to the
Revised Report resulting in a "Modified Report on the Algorithmic Language

ALGOL 60". A last minute amendment includes the ability to concatenate

AB39 p 12

strings. This is to allow spaces to stand for themselves within a string

as proposed in the Draft ISO Technical Report 1972.

We should like to thank those who replied to the questionnaire, namely:
A.J. Amorison, P. Bacchus, Lars Blomberg, W.M. Gentleman, Sakari Hayrynen,
D.J. Leigh, Anne Rogers, Andrew J. Skinner, J.F. Smith, J.R.W. Smith, P.D.
Stephens, Grace H.J. Sturgess, G.A. Tebling, Martyn Thomas, Kenneth G.
Walter and T.P.T. Williams. Additional correspondence was received from
D.J. Cairns, C.A.R. Hoare, R.S. Scowen, D. Simpson, Garry J. Tee and J.W.

van Wingen.

AB39 p 13

AB39.4.1

MODULAR PROGRAMMING IN ALGOL 68 I F Currie
18 6 75

1 Design aims

A, The modular compilation system should aid and encourage one to write well
structured top~down programs. For example, the following "module" (not 68-R)
could be regarded as a model for a large class of problems:

program = (int in;

input (in);
int answer;
process (in, answar);
output (answer)
)3
Our compiling system should be able to compile this (or something very like it)

without reference to what input, process and output actually do, or how they are

constructed. We should be able to run program by applying any one of a set of
actual modules (compiled later) into each of these formal positions. These actual
modules should be able to "see" only those indicators presented to them in program,
eg an actual module for output shoul& know what answer is but not what in is, and

certainly nothing about the dynamic construction of program.

B, To be forced to always observe a top-down mode of working would be quite
intolerable for certain programming tasks. For example, the creation of libraries
of procedures is naturally a bottoﬁ-up activity. Similarly the abstracﬁion of data
structures by providing a suite of procedures operating on concrete data objects
follows bottom—up thinking. ALGOL 68 is not very good for this kind of abstraction
since a change in the mode of the concrete data object will generally invalidate
any previously compiled module using the abstraction. This rather weakens the
reasons for abstracting in the first place. However, the module which defines the
abstraction should be one which allows other modules (as yet unwritten) to use some
set of modes, procedures or values declared within it. Note that the current 1900

68-R module system is entirely bottom—up,

AB39 p 14

C. The interfaces betweeﬁ modules (ie those indicators passed down at the formal
positions in the top-down case and those passed up in the bottomup case) should

be concise and explicit, In other words, the fact that two modules are fitted
together does not imply that one module knows all the indicators of the other, but
only those which are explicitly mentioned. The purpose of both the top-down and
bottom-up approach is to minimise the possibility of error by restricting information

flow along well defined directional channels.

D. The only factor in deciding whether two independently compiled modules fit
together is that both agree on their mutual interface. Clearly it must be

impossible to fit together incompatable modules.

E. The recomﬁilation of a module shouid only invalidate a previous compilation of
another module if it significantly changes their mutual interface. The meaning of
significant in this context will depend on the level at which the linkage of modules
is performed. In our system where the linkage is done at a quasi-binary level, the
only insignificant change to the interface is its extension by addition of other

indicators leaving the original indicators unchanged in mode and name.

2 The evolution of the system

2.1 Top~down

It is fairly clear that the top-down requirement (as expressed by our model program)
could be met by existing procedural structures. Thus the module program could be
a procedure with three procedure parameters:

proc program = (proc (ref int) input, proc (int, ref int) process, proc (int) output):

(ete)
To run program, we simply call it with the appropriate actuals of the correct mode.
If these actual modules were themselves structured, then it would be necessary to
partially parameterise them to get the modes straight. The modules in this system
are simply pure routine-denotations and a module which can be run as an independent
program is simply a proc void. The elegance of this system is somewhat offset by

the following snags:

AB39 p 15
1 We cannot pass mode and operator indicants as parameters of procedures,

2 I feel that it is preferable to pass information between modules by name and
mode rather than position and mode as in proc calls. This is particularly true
where different groups of programmers are involved.

3 The routine denotations for modules tend to have rather cumbersome and opaque
parameter packs. Further, partial parameterisation is a very heavy-handed way of

doing what will generally be a quite simple linkage job,

In order to get over these snags and still preserve the elegance of the original
procedural construction, two new unitary clause constructions have been introduced.
The first replaces the formal proc parameter call (eg input (in) in program) and
at the same time defines its interface; the other replaces the call of a procedure
which is a module (eg program itself). Thus, the module program becomes (now in
68-R 2900)
program = (int in;

formal input (in);

int answer;

formal process (in, answer);

formal output (answer)

)
A runnable program could then be constructed by supplying actuals to the formals
of program:
runnable program ! = (call program (input = (read(in)),

process = (answer := 2 * in),
output = (print(answer))))

The bodies substituted for input etc in this call of program would more usually be
independently compiled thus:
input module = at input of program (read(in))
making another runnable program by compiling:

runnable program 2 = program (input = input module, ... etc)

I shall call input of program the context of input module. Note that the call

AB39 p 16

construction is just another unitary clause and the bodies directly supplied for
substitution to its parameters as in runnable program 1 can access any indicator

normally available to that unitary clause.

2.2 Bottomup

The bottomup module seems to be adequately covered by saying :hat it is an
unbracketed list of declarations terminated by a keep list of indicators to define
the interface, eg

lists =

mode element = union (int, list),

cell = struct (element hd, tl),

1isf = ref cell;

list nil = nil;

cons = (element a, b) list: cell := (a, b);

proc
proc hd = (ref list a) element: hd of a;
proc tl = (ref list a) element: tl of a;

keep element, list, nil, cons, hd, tl

The indicators kept in lists may be used in any cther module which makes the new
declaration

access lists
The range of these indicators will be the same as th:% of anv indicator declared at
this point, This sounds simple, but unfortunately hides a aultitude of pitfalls.
These are mainly due to difficulties in deciding just when the declarations in
such a module are elaborated. If we say that the declarations are elaborated at
the access, then different modules using lists would have .- . z~ini declaraticms for
each of its kepts; also, the scope of their values might be unduly restricted. On
the other hand, if the declarations are to be elaborated at some global level it
appears that an ordering must be applied to the elaboration or different i~iulcs
accessed in a program, since pféédmably one such module can access another. Note
that this ordering is not only‘due't0~one module directly accessing another but

also, because of the possibility of side effects, of both accest :.» . 'T.ird wodule.

AB39 p 17

On the 1900 68-R system this ordering was defined by the order of the original
compilation of the modules; this ordering must be considered unsatisfactory as it

was the root cause of most of our difficulties in the practical use of the system.

In order to side—step this dilemma, I propose to allow only those declarations

which can be elaborated at compile—~time to form part of a bottomup module. This

is not quite as drastic as it sounds; the allowable declarations are declarations of
modes without dynamic parts, procedure declarations, identity declarations identifying
constants, and accesses to other modules. The module "1lists" is a legal bottomup

module,

Another point that arises in the bottomup mode of working is the definition of

the bottom. Clearly the module "lists"™ can be accessed from anywhere, but one could
also imagine a similar module which could only be accessed in some more limited
context. For example we might wish to write a suite of procedures in the context
input of program which could only be accessed in one or more of the actuals supplied
for input of program. The only difference it would make in this instance is that

the procedures in the suite could use the variable in, derived from program,

2.3 The System context

It would be highly desirable if we could implement all of the standard prelude and
system library using the same ideas and software as for user—defined modules. 1In
order to do this, all user modules are considered to be compiled in a global system
context which declares the variables in the standard prelude. There are very few

of these variables (standin and standout are the most important), and they form

the interface which is the system context, As this context implicitly surrounds all
user modules, all of the variables in the system context are automatically available
to all modules; similarly indicators kept in bottom—-up modules in the system library
will be automatically available - the appropriate access declaration will be inserted
where necessary. The system module which provides the global context will look

something like:

AB39 p 18

system

(

access open module; co introduces the mode charput, and procedﬁres open and close;
the access is not strictly necessary
since open module is in the system library co

charput standin, standout;

open (standin, etc); open (standout, etc);

formal user (standin, standout);

close (standin); close (standout)

)

In order .to run a user module, x say, the compiler/loader will generate a

call system (user = Xx).

Summary

The syntax of a module is:
Module -+ moduleidl = {Context} Body;
Context +;g£ formalidl of moduleid2;
The module given by moduleid2 must have already been compiled and must
contain a formal call on formalidl which will give a set of indicators to the
body.
Body -+ Tdbody,
Bubody,
Completed module;
Tdbody -+ Closed clause;
A Tdbody may contain formal calls and its Closed clause is voided.
Bubody + Constdeclist Keep Indicatorlist;
A Bubody may not contain formal calls.
Constdeclist is a sequence of constant declarations (see 2.2) separated by

semi-colons,

AB39 p 19
In addition the syntax of Unitary clause is extended by:
Unitary clause -+ call Completed module
Formalcallj;
Completed module + moduleid3 {(Formal identification list)};
Formalidentification + formalid2 = Closed clause,
formalid3 = Completed module;
Moduleid3 must have already been compiled (either at the system context or
at formalidl of moduleid2), has a Tdbody, and all of its formals must be in
the formal identification list., The indicatorgspecified by formalid2 in
moduleid3 are available in the closed clause. The outer module in the
completed module identified with formalid3 must have been already compiled
at formalid3 of moduleid3.
Formalcall + formal formalid4 (Indicator list);
formalid4 becomes a formal of ﬁoduleidl. When formalid4 is identified with

an actual, the indicators in the Indicator list become available to that actual.,

Also the syntax of Declaration is extended by:
Declaration + access moduleidé;
Moduleid4 must have already been compiled (at either the system context or at
formalidl of moduleid2) and have a Bubody. The indicators kept in that Bubody

are available in the current range.

Indicators arising from the standard prelude or system library will be available

to modules without extra context or access declarations.

AB39 p 20
AB39.4.2 Proposal for a Modules facility in ALGOL 68.

C.E.,Lindsey.
CHL 75-05-12

Thic proposs) arises from Schuman's vaper "Toward Modular Programming in High-
Level languages" (AB37.4.1), together with discussions with Scuuman, Boousn, Dousue and
Guy in Manchester during May 1974, with Dewar at Breukelen, at the Support Sub-
conmittee in Boston in January 1974, and afterwards with Dewar in Chicago. The proposal
is described mainly by way of examples., A formal specification is given afterwards.,

1. Module declarations.

A module-declaration declares a module-indication and ascribes a module to it.

A module consists of & module-text and an environ (cf. routines).

module a = (int i := O3 proc c = {(int i) void: i +:= j);

2. Invocations.
An invocation identifies a module-text declared earlier (possibly in a different

compilation).,
invoke aj

Bagically, an invocation is a declaration that causes certain indicators to become
visible in the current range and also, when it is elaborated, causes space to be
reserved and ascriptions and initializalions to be performed (Zust like any other
declaration in the language). It follows that a given modulic may nui be invoked at more
than one place within a given reach, nor may it attempt to declare indicators already

known within that reach.

3, Accessions.

An accession identifies an invocaiion made earlier (an invocaticn is thus both an
applied occurrence and a defining occurrence of its module-indication). It causes the
indicators declared earlier to become'visible sgain (overriding any intermediate re-
declarations of those indicators), but it does not involve any re-elaboration of their

declarations.

The example below shows how a module-declaration is identified by invocations
(dotted lines), and how invocations are identified by accessions and by other indicators
(full lines).

AB39 p 21
module a = (real x := 0);

»r
1N e - e e == = - -~ -
. ' ! . 3
invoke a; x := 1j, proc void pp; '
' - '
! 1
(invoke a; x t= 2; X
2 L
r i
]

proc p = void:,(access a; print(x));
) <)
(invoke é; X $= 53%

P; ¢ prints 2.0 ¢
print(x) £ 5.0 £
print(x) £ Z.O £

print (x)) £ 2.0 ¢4
print(x)) £1.0¢

Observe how the identification of "access a" determines the scope of the procedure "p",
so that "pp $= p" would have been illegal., Observe also that both module-~ and invocation-
definitions of "a" occur in the outer reach. This is allowable because, even though these
are both defining occurrences of "a", the 'QUALITY's so defined are not related to each
other,

4. Hidden.

Within a module-text, declarations may be hidden (labels are hidden automatically).
Such declarations are elaborated and are visible from within the module-text, but they
are not rendered visible outside the invocation. If a module-text declares a variety
of procedures, these may communicate amongst themselves by means of hidden global
variebles, with no possibility of the user interfering with those variables himself.

This is compzrable to, but more powefful than, the own facility of ALGOL 60,

The module r below, when invoked, makes available a procedure random, but not the

underlying variable which remembers the current position in the pseudo-random sequence.

module r = (hidden real lastrandom := 0.5;
proc random = real: (... ; lastrandom := ...));
invoke r;

print(random) ¢ but not print(lastrandom) ¢
Lastrandom is not now visible, but its scope is clearly that required.

Frequently, in order to use the hidden facility, one has to declare a module which
is then only invoked upon one occasion. This can be avoided by immediate invocation of

a module-text,

AB39 p 22

invoke (hidden real lastrandom := 0.5;

proc random = real: (... ; lastrandom = ...)) j
print(random) £ but not print(lastrandom) ¢

This also makes it possible to render a whole group of declarations in a module
invisible without having to write the word "hidden" in front of each one.

module a = (hidden invoke (int privatei;

proc private2 = void: privatel := public2);
invoke (int publici;
proc public2 = void: (private2; print(private1))));
invoke as
public! := 23 public2
This feature would have been useful when writing the standard-prelude of the Revised

Report,

5. Provocations,

Partial compilation of programs is needed for two purposes: for assembling large
particular-programs piecemeal, and for constructing libraries for use by many
particular-programs. The latter problem raises the particular difficulty of where to
invoke a module that may be used at several places in a particular-program, perhaps
including invocations of other library modules which use it at second hand. It may be
important that it be invoked only once, so as to get only one copy of any global
variables that it mgy create. Contrariwise, it must be invoked afresh in each particular-
program - otherwise all particular-programs will share the same globals, Such library
modules should therefore be conceived as having been declared in the particular-prelude,

rather than in the library-prelude,

Supnose that the library modules 'vibrations' and 'stresses' both make use of the
library module 'matrices'. However, the user of these modules is presumed to be unaware
of the fact and will not therefore invoke 'matrices' himself (unless he needs it for
some other purpose of his own)., It is required that only one invocation of 'matrices!
should be bfought into existence, whether the user invokes 'vibrations', or 'stresses!,
or his own use of 'matrices', of any combination thereof. The particular-prelude

therefore contains:

module matrices = (...)3 provoke matrices;

module vibrations = (hidden access matrices; ...); provoke vibrations;

module stresses = (hidden access matrices; ...); provoke stresses;

Here, "provoke matrices" serves as a defining occurrence for "access matrices" to

identify, but its elaboration will not be triggered unless such an "access matrices"

actually occurs (moreover, if the 'hccess matrices' is itself a constituent of a module-
b — ———

definition, there must also occur an invoke or a triggered provoke to trigger that).

AB39 p 23
So, we now have:

begin ¢ of the particular-program §

access vibrations;

access matrices ¢ because the user wanted to use it for himself f ;

end

whereupon the "provoke matrices" and the "provoke vibrations" (but not the "provoke

stresses") in the particular-prelude are triggered (but the body of matrices is
elaborated only once).

The normal convention should be for libraries to declare modules and to provoke
them. Users should then use access rather than invoke, unless they specifically want

a private copy of the module,

A provodation may also be used within a particular-program (here, it would be most
unlikely not to be triggered) when it is required that declarations should be elaborated,

but that their indicators should not be made visible until some inner range.

Note that an access always identifies an invoke or a provoke, and that an invoke or

a provoke identifies a module.

6. Partial compilation,

Even though a particuler-program is made up of several separately compiled parts,
there must still exist a conceptual complete particular-program made of some
concatenation of its constituent texts (parhaps with a few enclosing begins and ends
provided by the system)., This conceptual complete particular-program is the one whose
meaning will then be defined by the Report. The manner in which pre-compiled modules are -
filed awgy and retrieved by the operating system is not defined in this proposal, but
should be controlled by pragmats.

begin
module & pr in album A pr = (...);] 1st compilation

module b pr in album B pr = (...) :] ond compilation

begi
invoke a pr from album A pr, b pr from album B pr; final compilation
end

end

AB39 p 24

Modules may make use of declarations in other modules provided, presumably,

that they do not ask for information in modules not yet compiled.

F
o
=3.

module a = begin]
proc void pp;
real y3

(invoke b; skip); 1st compilation

p
end;

I]

module b = begin

access aj;
proc p = void: print(y); 2nd compilation

invoke aj skip]final conpilation
end

In the second compilation, access a identifies (with some help from the loader) the
invoke a right at the end, but it relies on the previous compilation of module a

for the &clarations of "pp" and "y". Although the first compilation invokes b (which is
not yet compiled), the declarations of b are not needed. Provided the compiler is able

to recognise the special case "(invokq,_‘t_)_; skip)", no problems need arise,

_ AB39 p 25
Formulation of module proposal.

{{Module declarations and invocations are new kinds of declarations.
New kinds of entry in the nest are therefore needed.}}
162030
E) DEC :: ess ; MODULE TAB ; SUBSIDIARY TAB.
L) MODULE :: module DECSETY TALLY.
M) SUBSIDIARY :: subsidiary DECSETY TALLY.
4.8.1.
F) QUALITY :: ese ; MODULE ; SUBSIDIARY.)
{{ 'MODULE TAB's will be introduced into the nest by module-declapations.
'SUBSIDIARY TAB's will be introduced by INVOCATIONS.}}

{{New kinds of indicator are needed to identify these new properties.}}
4e841.
A) INDICATOR :: e.. ; module indication.

{{Modules are ascribed to module-indications by means of module~
declarations.}}

4.9, Module declarations
4.9.1. Syntax

a) NEST1 module declaration of DECS{41a} :
module{94d} token, NEST1 module joined definition of DECS{41b}.
b) NEST1 module definition of module DECSETY TALLY TAB{41b} :
module DECSETY TALLY NEST1 defining module indication
with TAB{48a},
where <TAB> is <bold TAG>,
is defined as{94d} token,
NEST1 TALLY module text exhibiting DECSETY
defining new DECSETY PROPSETY{C}.
C) NEST1 TALLETY i module text exhibiting DECSETY
defining new DECSETY PROPSETY{b,4Ab} :
NEST1 new DECSETY PROPSETY TALLETY module sepries
with DECSETY without PRCPSETY{d} STYLE pack.

d) NEST2 TALLETY module sepies with DECSETY without PROPSETY{C} :
strong volid NEST2 unit{32d}, go on{94f} token,
MEST2 TALLETY module series with DECSETY without PROPSETY{d} ;
where <DECSETY> is <DECSETY1 DECSETY2>,
NEST2 TALLETY1 declaration of DECSETY1{41a}, go on{94f} token,
NEST2 TALLETY2 module series
with DECSETY2 without PROPSETY{d},
where TALLETY 1s the greater of TALLETY1 and TALLETY2{e} ;
where <PRGPSETY> 1s <DECSETY1 DECSETY2 LABSETY2>,
hidden{94d} token,
NEST2 declaration of DECSETY1{41a}, go on{g94f} token,
NEST2 TALLETY module series
with DECSETY without DECSETY2 LABSETY2{d} s
where <DECSETY cum PROPSETY> is <EMPTY cum LAB LABSETY>,
NEST2 Label definition of LAB{32c},
NEST2 module series with EMPTY without LABSETY{d} ;
where <DECSETY cum PROPSETY> 1s <EMPTY cum LAB LABSETY>,
completion{94f} token, NEST2 lLabel definition of LAB{32c},
NEST2 module series with EMPTY without LABSETY{d} ;
where <DECSETY cum PROPSETY> is <EMPTY cum EMPTY>,
EMPTY.

€) WHETHER TALLETY is the greater of TALLETY1 and TALLETY2{d,41a,b} :
where <TALLETY> contains <TALLETY1>,
WHETHER <TALLETY> is <TALLETY2> ;
where <TALLETY> contains <TALLETY2>,
WHETHER <TALLETY> is <TALLETY1>.

AB39 p 26

f)» module text defining LAYER : .
NEST TALLY module text exhibiting DECSETY defining LAYER{c}.

{The use of 'TALLY' excludes circular chains of module-definitions
such as MODULE A = (INVOKE B; SKIP; HIDDEN REAL x), B = (INVOKE A).}

{Examples:

a) MODULE A = (REAL a, b; a s=b := 0),
B = (REAL a, b; HIDDEN REAL x, Y)

b) B = (REAL a, b; HIDDEN REAL x, Y)

c) (REAL a, b; HIDDEN REAL X, y)

d) REAL a, b; HIDDEN REAL X, y }

s{ln example c, 'DECSETY' corresponds to the declaration REAL a, b and
PROPSETY' to the hidden declaration REAL x, y. Both these properties
will be made visible as soon as this module text is invoked, except that
'PRCPSETY ' will only be visible from inside it.}}

4.9.2. Semantics

a) A module-declaration D is elaborated as follows:
. the constituent module-texts of D are elaborated collaterally;
For each constituent module-definition D1 of D,
. the yield of the module-text of D1 is ascribed {4.8.2.a} to the
defining-module-indication of D1.

b) The yield of a module-text T, in an environ E, is the scene
composed of

(i) T, and

(ii) the environ necessary for {7.2.2.C} T in E.

¢) A module-series C is elaborated as follows:

If ¢ has no direct descendent {i.e., it is EMPTY}, or if C contains
a direct descendent completion-token,

then the elaboration of C is completed;

otherwise,
.« the declaration or the unit, if any, of C is elaborated;
. the series of C is elaborated.

{{1t is now possible for a single coMMON-definition to create more
than one 'peEC' in the nest, or even no 'DEC's at all. Moreover,
'TALLY's must be passed back from certain COMMON-definitions to the
module=-series.}}

40101

_ A) COMMCON :: eee ; Mmodule ;.- INVOCATION.

a) NEST TALLETY declaration of DECSETY{a,32b,49d} :
NEST TALLETY COMMON declapration of DECSETY{42a,43a,44a,e,45a,
49a,4Aa,~} i
where <DECSETY> 1s <DECSETY1 DECSETY2>,
NEST TALLETY1 COMMON declaration of DECSETY1
{42&,438,448,8,458,498,4Aa,—},
and also{94f} token,
NEST TALLETY2 declaration of DECSETY2{a},
where TALLETY is the greater of TALLETY1 and TALLETY2{49¢}.
b) NEST TALLETY COMMON joined definition of PROPSETY
{b.423.433.44a.e.45§.46e.49a.4Aa.541e} H
NEST TALLETY COMMON definition of PROPSETY
{42b,43b,44c,T,45¢C,46F,49b,4Ab,541fF,~} ;
where <PROPSETY> 1s <PROPSETY1 PROPSETY2>,
NEST TALLETY1 COMMON joined definition of PROPSETY1{b},
and also{94f} token,
NEST TALLETY2 COMMON definition of PROPSETY2
{42b,43b,44c,f,45c,46F,49b,4Ab,541F,-},
where TALLETY 1s the greater of TALLETY1 and TALLETY2{49¢}.
{{Rule 4.1.1.c 1is no Longer needed.}}

AB39 p 27

{{This requires some consequent changes in the syntax of series.}}
3.2.1.
b) sSOID NEST series with PROPSETY{a,b,34c} :
ece 3} .
where <PRUPSETY> is <DECSETY1 DECSETY2 LABSETY2>,
NEST TALLETY declaration of DECSETY1{41a}, 9o on{94f} token,
SOID NEST series with DECSETY2 LABSETY2{b} ;

L X N] e

{{Modules may be invoked by invocation-declaprations. Modules alpeady
invoked in this way may also have their indicators rendered visible
again by means of accession-declaprations.}}

4.10. Invocation declarations

4.10.1. Syntax

A) INVCCATION :: invocation ; provocation ; accession.
B) MODIARY :: module DECSETY ; subsidiary DECSETY.

a) NEST2 TALLY INVOCATION declapation of DECSETY{41a} :
INVOCAT ION{94d} token,
NEST2 TALLY INVOCATION joined definition of DECSETY{41b}.
b) NEST2 TALLY INVOCATION definition of DECSETY{41b} :
where <NEST2> 1s <NEST1 new PROPSETY1 DECSETY PROPSETY2>
and DECSETY independent PROPSETY1 PROPSETY2{71a,b,C,q,r},
where INVOCATION of MODIARY TALLY TAB defines
DECSETY{c,d,e,~},
MODIARY TALLY NEST2 applied module indication with TAB{48b} ;
where <NEST2> is <NEST1 new PROPSETY1 DECSETY PROPSETY2>
and DECSETY independent PROPSETY1 PROPSETY2{71a,b,C,q,r},
where <INVCCATION> is <invocations,
NEST2 TALLY module text exhibiting DECSETY
defining new DECSETY PROPSETY{49cC}.
C) WHETHER invocation of module DECSETY TALLY TAB defines
DECSETY subsidiary DECSETY TALLY TAB{b} : WHETHER trué€.
d) WHETHER provocation of module DECSETY TALLY TAB defines
subsidiary DECSETY TALLY TAB{b} : WHETHER true.
€) WHETHER accession of subsidiary DECSETY TALLY TAB defines
DECSETY{b} : WHETHER true.

{Examples:
a) INVCKE B, (REAL a, b; a := b := 0)
b) B . (REAL @, b; a :=b := 0) }

{Note that a provocation places a 'sybsidiapry DECSETY TALLY TAB'
in the nest. This may subsequently be identified by an accession
which then makes those 'DECSETY' available., An invocation makes both
the 'subsidian% DECSETY TALLY TAB' and the 'DECSETY' available
together, so that INVOKE A 1s identical in its effect to
PRCVUKE A; ACCESS A.}

7.1.1.
0) WHETHER MODULE related SUBSIDIARY{d} : WHETHER false,
p) WHETHER SUBSIDIARY related MODULE{d} : WHETHER false.

{{Cbserve that °'MODULE' is not related to 'SUBSIDIARY', so that
MODULE A = (SKIP) and INVOKE A may both occur in the same reach.
Contrariwise, this means that in

(MODULE A = (SKIP); INVOKE A; (MODULE A = (SKIP); ACCESS A))
the ACCESS A in the innep reach identifies the INVCKE A in the outer
one.}}

AB39 p 28
4.10.2¢ Semantics

a) The elaboration of an INVOCATION-declaration consists
of the collateral elaboration of its constituent INVOCATION~
definitions.

b) An INVOCATION-definition-of-DECSETY I, in an environ E, is
elaborated as follows:
. Let s be the scene ylelded, in E, by the applied-module-indication
or module-text of 1 in E;
case A:; 1 1is an invocation-definition or a "triggerred” {c}
provocation~definition:
. Let Eq be the environ established beside E {3.,2.2.b}, around the
environ of s, according to the module-text T of S;
. the module-series of T is elaborated in E1 {4.9.2.C};
1f the dipect descendent of I is an applied-moduyle~indication,
then
. Llet 'DECSETY' be 'DECSETY1 SUBSIDIARY TAB';
. the scene composed of T and E1 is ascribed in E to some
SUBSIDIARY-defining-module-indication-with-TAB;
case B: 1 is an accession-definition:
. Let E41 be the environ of si
. Let 'DECSETY1' be 'DECSETY';
other cases {1 is an untriggerred provocation~definition}:
« the elaboration of I {involves no further action and} is
completed;
If '"INVOCATION' is ‘'invocation' or 'accession',
then
For each value or scene which has been {previously in the case of
‘accession'} ascribed in E1 to a QUALITY-defining-indicatop-with-
TAX J,
1T 'DECSETY1' envelops 'QUALITY TAX',
then that value or scene 1is {re-}ascribed in E to J.

c) A provocation-definition 1 is "triggerred" if there exists some
triguerred accession-definition whose applied-modyle-indication
identifies {7.2.2.b} the applied-module-indication of 1,

An accession-definition is "triggerred® if it is not a constituent
of an untriggerred module-definition.

A module-definition M is "triggerred" if there exists some
invocation-definition {whether triggerred or not} or some triggerred
provocation-definition whose applied-module-indication identifies
{7.2.2.b} the defining-module-indication of M.

{The elaboration of an untriggerred provocation-definition involves
no action., For example, in the elaboration of
MODULE A = (REAL X := pandom); PROVOKE A;
MODULE B = (HIDDEN ACCESS A; REAL y := x # random); PROVOKE B;
MODULE C = (HIDDEN ACCESS B3 REAL Z := y # pandom); PROVOKE C;
BEGIN ACCESS B; print (y) END
random is called only twice.}

{{Establishment "beside™ an environ (as opposed to "upon" it) requires
a change to 3.2.2.b. The first bullet of that rule becomes:}}
. upon or beside an environ E1, possibly not specified, {which
determines its scope,}
{{The two bullets commencing "if E1 is not specified ..." become:}}
. 1if E1 is not specified, then Let E1 be E2 and Let "upon Eq" be
assuned;
. E is newer in scope than E1 (is the same in scope as E1) if the
establishment is upon E1 (is beside E4) and is composed of E2 and a
new Locale corresponding to ‘PROPSETY', if C is present, and to
'EMPTY' otherwise;

AB39 p 29
{{various new symbols have been invented:}}

9.401od
module symhol{49a} MODULE
hidden symbol{49d} HIDDEN
invocation symbol {4Aa} INVOKE
provocation symbol {4Aa} PROVOKE
accession symbol {4Aa} ACCESS

{{vinor changes are required at other places in the Report.}}

{{3.2.2.b.Case A, The Line specifying the construct of the scene
ascribed for a Label-definition becomes:}}
(i) the series or module-series of which L is a direct
descendent, and

{{A Jump might be a constituent unit of a module-series rather than of
a series, The first bullet of 5.4.4.2 becomes:}}
. Let the scene ylelded in E by the Label-identifier of J be composed
of a series (a module-series) S2 and an environ E1;
{{The first bullet of 5.4.4.2.Case A becomes:}}
. Let s1 be the series (module-series) of the smallest {1¢1+¢342.G}
serial-clause (module-text) containing s2;

{{Extra predicates.}}
Telede
a) WHETHER PROPS PROP 1independent PROPSETY{4Ab} :
WHETHER PROPS independent PROPSETY{a,b,cC,q,r}
and PROP 1ndependent PROPSETY{a,b,cC}.
r) WHETHER EMPTY independent PRCPSETY{4Ab} : WHETHER true.

{{The proper identification of indicators dectared via invocations is
ensured as follows:}}
Tele2e
b) The defining NEST-range {a} of each QUALITY-applied-indicator-
wlth-TAX 11 contains {of necessity} either a QUALITY-NEST~LAYER-
defining-indicator-with-TAX 12, or else an applied-module-indication
13 directly descended fpom @ NEST-LAYER-INVOCATION-definition-of-
DECSETY1-QUALITY-TAX-DECSETY2. 11 is then said to "identify" that
12 or 13.
{{This 1s sufficient to ensure, in conjunction with 7.2.2.c, the proper
scope for routines containing accessions.}}

{{1+¢1.4.2.c. The List of elidible hypernotions must include:}}
ess "without DECSETY LABSETY" o «ss

{{An extra predicate:}}
103010
0) WHETHER <EMPTY> contains <EMPTY> : WHETHER true€.

{{Revised pragmatic remark concerning scopes:}}

2¢1¢143,
b) Each environ has one specific "scope". {The scope of each environ
is never "oLder" (2.1.2.f) than that of the environ from which it is
composed (2e1e1e1+C)a}

{{A module-text must be an establishing-clause.}}
302010
1)e establishing clause ; eee 3 .
NEST TALLY module text exhibiting DECSETY defining LAYER{49d}.

{{Library declarations (especially those which have side effects) should
be in the particular-prelude rather than in the Libpapry-prelude. In
10.5.1, extend the first sentence by:}}
and forms which, because of their side effects, are inappropriate for
inclusion in the Library=-prelude {10.1+2+C}.

AB39 p 30
AB39.4.3 A Note on Integral Division

by L.G.L.T. Meertens, Mathematisch Centrum, Amsterdam.

Editor's note This paper is taken from a letter by Lambert -Meertens in reply

to someone who had pointed out that the mod operator in ALGOL 68 does not
provide the same result as the remainder implied by the % operator. This is
a sad tale, involving a lot of history going back to the design of ALGOL 60
and the fact that most American computers worked in "sign and modulus"
notation at that time. The matter has been raised before (see AB28.3.2, LO4
and LO5, half of which was accepted) but it has always been difficult to
excite any concern over it. The conclusion of the present paper is that it

is essentially the % operator which is wrong. Future language designers

please note.

My distrust for arguments based on "natural choice for widely spread

computers” almost parallels my dislike for inconsistency.

i) The origin of integral division lies in the following question:
How many times b may be taken from a?
or, in a more mathematical expression
max {q | q >0 Aq xb may be taken from a}
or max {q | g >0Aqxb < a}.

1f we abbreviate this to a quot b (from Latin quotiens = how many times),

we might define

op guot = (int a, b) int:
if a <0 A b > O then undefined
elif b < O then undefined
else int q := 0 ;
while (@ + 1) xb < adoq +:=1 od ;
q
fi .

Note that the reasons behind the undefinedness for a < O A b > 0 and for b < 0
are of a different nature: in the first case no natural q satisfies q x b < a,

in the second case no such maximal q exists.

Several ways exist to relax the undefinedness. A '"natural" way would
be to express the original question algorithmically thus:

int q := 0 ;

while b may be taken from a

do (take b from a, q +:= 1) od

which would have a quot b equal to zero for a < b.

AB39 p 31
Another direction is indicated by algebraic considerations, viz, by the
wish to extend the validity of a = q x b = a quot b = q from natural a
and positive b to arbitrary integral a and non-zero b.
One way to obtain the desired result is to define

a+b = sign a x sign b x (abs a quot abs b) ,

chosen in ALGOL 60/68 and the hardware of many a computer, but this is
certainly not the only way; Arguments for this choice in ALGOL 68 were
the compatibility with ALGOL 60 and the Bauer-Samelson criterion (since the
"normal” question is that for which a is natural and b positive). It would,
however, have been possible, and, I think now, have been desirable, to define
the operation in such a way that

(a+nxb) +b=a+b+n
would have been valid for arbitrary a and n and non-zero b. For example, in
the binary search algorithm, an assignation like mid := (left + right) + 2
will éccur, and it is clearly desirable that this is not sensitive to a
simultaneous shift in the bounds. At present, if we define

op mid = (ref [] real x1) ref real:

x1 [(lwb x1 + upb x1) 2],
then
[-1 : 0] real x1 ; mid =1 :=: mid X1 [@1]
yields false!

ii) The origin of the modulo-operation lies in algebra:
Given a positive b, the integral numbers Z may be split into b residue
~classes, denoted 0, 1, . . ., b -1, wherem = {n e ZZ] n=m (mod b)} .

We now want an operator mod such that a e m <+ a mod b = m.

Again, this may in some way be extended to arbitrary non-zero b, e.g.,
by using Zg = Zgb, since Z%-is the quotient group Z /{b}, where the ideal
{b} =bZ= (-b)Z= {-b}. Note that a is already arbitrary integral.

iii) The inconsistency.

Define a rem b = a - a quot b x b. ALGOL 60 programmers will have felt
a need for such an operation. As soon as one is doing multi-length integral
arithmetic, base conversion, etc., the remainder is as important as the
quotient. In view of the "size'" of arithmetic values and the conversion
routines in ALGOL 68, the need will have disappea:ed largely. MNoreover,
unless a and b have opposite and differentsigns, the programmer may use
a remb = a mod b.

The "inconsistency" is now that this does not hold for all a and b.

AB39 p 32

Possible remedies:

Ri: Redefine #. This is a clean solution, which has been adopted
in ALEPH.
R.: Strike mod. But whom do we serve by this? Expressing mod by

means of ¢ is cumbersome and bug-prone (since the programmer is
likely to overlook the possibility of negative a), and is probably
dealt with more efficiently in code.

Riii: Add rem. This is also a clean solution. However, there seems
to be little need for it, and whatever need is left will quite
likely be concerned with natural a and positive b (which is
catered for by mod), and, if not, the user will as likely want
a quot b to yield zero for a < b, and therefore, a rem b to yield

a, as any other result.

It seems too late for any of these, but it will be clear that I should
favour R,. For future ALGOL 68-ish languages, I should like to see something

like op (¢, #x) = (int a, b) struct (int, int) : ¢ (quotient, remainder) c.

A AB39 p 33
AB39.5.1 ALGOL 68 Revised Report - ERRATA-4

The following are corrections to Technical Report TR74-3, the Revised
Report on the Algorithmic Language ALGOL 68, issued in March 1974 as a
supplement to ALGOL Bulletin 36. They are supplemental to those
published as ERRATA-2 in ALGOL Bulletlin 37 and as ERRATA-3 in ALGOL
Bulletin 38, and are to be applied after them. They bring the text of
TR74-3 into lLine with the definitive text of the Revised Report, as
published in Acta Informatica vol. 5, pts 1, 2 & 3.

CATEGORY A (significant errors)
p121 10.2.3.0.a45 # AND => & = 3, AND #

a+15 £#1=>4x =9, +» =9, | #
p122 10.2+3.2.b # AND => &, AND #
p123 10e243636u £ 1 => 4x, +¢, | #
-p124 10.2.3.4.3 £ 1 => 4%, te, | #

100203050e,f # 1 => "l'X, "“, 1 #
p126 1002.3080d # AND => &, AND 5

P150 10.3.1e6.k+2:k+14 {supersedes ERRATA-2}
ELSE BOOL reading ?2?2? FI =>
ELSE REF REF P0OS cpos = cpos OF T;
WHILE C OF Cpos # C
DO
IF ¢ <1Vc¢c>c OF book bounds (f) + 1
THEN undefined
ELIF ¢ > ¢ OF cpos THEN space (f)
ELSE backspace (f)

Fli
oD #
p151 1003.2-10(:"'8 # #lLo REAL XX = y: => £
Length := 0 => length := (after = 0 | 1] 0)
C+9 # XX 2 =>
y + ¢Lu'.5 X dlo .1 t after > #
p216 12.4."+=:" Fr,t=>r,t
. +X 10e2e3¢0e8, 10e243e3euU, 10.2:3.4.8,
1042¢3.5.8, T
+% 10e2e3¢0e8, 1062e3e3eU, 10.243.4,.8,
100203.5.6. f
& 10.2.3.0.3, 100203020b’ 100203080d 5

CATEGORY B (clarifications)
P3G 2e1ede2 =221 # constituent reference-to-real-assignation
(5020101.3) =>
constituent reference~to-real-serial-clLause
(3.2.143) #
P45 3.0e1.T+3,+4 # NEST => NEST STYLE #
p46 3.2.+4 # sequence => possibly empty sequence #

32445 # which => which, if any, #

AB39 p 34
P63 4.6.1.=3 # the flexibility => flexibility #

p64 4.6.1.examples.i
#1:nNn, 1 :m=>1:Mm, 1: n#

p65 4.6.2.a+4 # developed => "developed” #
‘P68 5.47 # thegend => the end # {twice}

P76 5.3.2.2.b.Case C+5
which => and # {twice}

p83 641.+10 NEST => 'NEST' #
P88 6.7¢1.-2
p8S T.+5

P90 Teledem

'991 702-‘11

call => calling #
boolean => 'boolean' #

Kybyn => K,L,n,47f #

O™ W™ W™

'neal Letter x' =>
'neference to real letter x' #

P99 8B.1.0.1.a+1 # S1ZE{94d} symbol => SIZE symbol{94d} #

p101 8.1.2.2.b.Case A+2
£ mve => mVe #

p103 B.2.2.2+7 in mDe => contained in wDe #

£
p104 8.3.+4 # alloisgwell => all is well #
p107 9.2.1.d46 # other PRAGMENT symbol => PRAGMENT symbol #
#

P114 Gede2.2.CH+2 a typographical display feature =>
typographical display features #

‘ Qed el el e CHT # letter-L-lLetter-0 => bold-Letter-L-Letter-o0 #

P119 10e2e1.J+3,m+3 # in dlo, => _
of which 'slpo' is composed, #

p121 10.2.300.34’7."’8 # <
< 5, LE = 5,
2 5, GT = 5, #

10e2+3.10€43 # produced => produced (nor any unintended
particular-program be produced) #

P135 10e3+1.3.bb+1,+3,45,+7,+9 _
which yields => , which is

5 2?22 GT = §, =>
5 LT =5, ¢ =_5’ <=

nnn
in

p137 10.3.1.3.cc.”"on char error"-3
"pagegnumber," => "page number "

P138 10.3e1e3.FFf+1 # calling => ecallse Of #

10341430045 # N3 =>n = 0; #
p140 10.3.1.4.aa+1 # an explicit call => explicitly calling #
pi142 10.3.1.4.d+16:17£

the book ??? putting =>
opening is inhibited by other users #

AB39 35
P147 10.3.1.6.b+2 & current pos(f) => cpos OF # P

p151 100302.1QC+6 # Y = =>y = &

P157 10+3.3.1+2."L bits Lb"+2
ofo OF Lb => al fo OF Lb

p161 10.3¢3¢2.3."REF L BITS"+2
odfo => dl fo

p165 10e3.4.1.1.Examples.a,.b,.d,.e
"taELe;of‘ => "table of"

P167 10¢3.401+1.00+1 # 10.2.5.8 => 10.3.5.b #
10e3e4.1e1.hN+2 # cC => dd #
ii+2 # dd => ee #
P173 10e3¢4e3e1.bb+22 # number to => number of digits to #

p175 10.3.4.6.1.Example.a .
"tableyof" => "table of"

D176 1003.4.701.bb+8 £ . =? H
e 1if mle cannot be represented by such a
string, the conversion is unsuccessful. #

p182 10e3.5.d+7 # ELSE => ELIF UPB ins > 1
THEN #
10.3.5.8-4 # ELSE => ELIF UPB frames > 1
THEN #

P185 10.3.5.1.a."edit L int"+2
8 := => STRING t =

43 # LOC INT, s => LOC INT, t #
+6 # ELSE => ELSE t PLUSTO 8; #
+7 # UPB s => UPB t #
"edit L real"+2 # sign2 := FALSE, => STRING poimt := "¥; #
+3 # STRING t; => #
+5 £)) =>); point := ".") #
+6 # (2 "e" 222)); => #
+7 £ ex0=>17 "e"§
+8:+9 # (t := 2?2? PLUSTO 8); => edit int (exp); # {sic}
+12 # (t := => STRING t = #
£)) =>); #
+13 # PLUSTO 8; => #
+14 # LOC INT, 8 => LOC INT, t #
+17 # ELSE =>

ELSE t [: b] + point + t [b + 2 :] PLUSTO s; #

AB39 p 36

p187 10.3.501.a0"GPATTERN"-3
sinsert := LOC [1 : O] SINSERT; =>
FCR 1 TD UPB sinsert
DO sinsert [1] := (0, "") OD; #

p188 10-30501ob+10 # true => TRUE #
'marker="."'+1 & (sJ # "." | J ~:= 1)5 => #

p189 10.3.5.2.2."¢ boolean ¢"+2
STRING (flip) => flip

10.3.5.2.8."¢ complex £"+6
§b1Vb2=>b1ADb2 £

P191 10e3e5.2.8¢ "FPATTERN" 42
sinseprt ¢= LOC [1 ¢ 0] SINSERT; =>
FOR i1 TO UPB sinsert
DO sinsert [i] := (0, "") OD; #

"FPATTERN" +4 # END => END , #

P199 11e5.43 # suitable => suitably #
p202,203 _
11.11. "putf"+1,+3,+5,+7 (at the end of each Line)
£ 4 => "x §

"outf+2,+4,+6,+8 (at ;he start of each Line)
=>
{in other editions of the Report, this treatment
of Line splits in formats may occur at different
positions}

"outf"+1:49 #§ o => # {throughout}

p216 12.3."balances" # g => g
'vegins with' 1.3.1.h, i, J #

"coincides with"
L =>1L
'contains' 1.3.1.m, N #
"falge" £ a, b=>>b#

"subset of" §n=>n
'true' 1.3.1.2 #

p220 "print®,"printf","read","read bin","readf"
1005.20 => 10.5010

"standconv" £ 2.d => 2.d
stop 10.5.2.a2 #
"write”,"write bin","writef"
1005-2- => 1005010

AB39 p 37

CATEGORY C (minor misprints)

p4 OeZe3e+1 # *0Wne => nOWNe #
P18 1e1e3.4.€410 # (b) may => (c) may #
P24 1e1e5e.ba(iil)+2 # provided ones; => ones provided in aDe, #
P25 1e3e-1 # Looking => Looking #
P27 1e3¢3.-5 #o'unless => e'unLess #
P33 2¢1e3e1eT=5 §toas=>as#
P38 2e1e4.+2 # action => action. #
pd6 3e1.l1.a+1 # 32a => e¢32ae #
Je2el1eat+ 3 # Here => qHere #
b1 § 94F => «94fe #
p48 3.2.2.b.Cése A # a an => an #- .
P52 3edet1e—=2 # except => (except #
P54 3e4e2.-11 # 1664 => 1664, #
P57 3.5.2.step 3+2 # mwhile => eyhile #
P61 4e4.2.-2 # » => X #
404424046 # 'MODE'e => #'MODE'e #
P65 4.6.2.b.Case B+7 # boundeof that => bounde of that #
p71‘ 5.2.3.1.-1 # osample => esample #

p84 6.1.1.Examples,e+1
cross references => cross—-refeprences

P88 6e7++5 # ® =>x §
po0 "ambiguities™+1 £ 97 fe=> 97 fe , #

p91 "In such cases"-5
& SKIPe=> SKIPe , #

=1 £ 27 g => 27 fo o 4
T7e2e=1 # ende } => ENDe .} #
P93 Te2e2.C+3,+12 £ , => ; #

AB39 p 38

P102 8e1e54+1 # evold => eyoid #
p107 9+3.C=2 # reference Language => reference-tLanguage #
P113 9e4.2414G £ H => oHe #
1 => ol
Gedele24b+5 # being, => , being, #
p128 10+2¢3.9.€ # ol. BYTES => oL oBYTES #
p125 10e2.3.7.0.+1 # short => shorten # {twice}
p138 10e3e1e3.TT+2 # call => ecalle #
p140 10e3+1.4.bb~1 # implementation dependent =>

implementation-dependent #
p147 10e3.1.6.0d call => ecalle #

suppresssed => suppressed #

#

- p156 10.3.3.1.€€ # , then => o, then #
p168 1003.4.1-iokk-6 #
#

p159 100303-2.CC+4 ”Dl." or ”Di." =>
o"["e Or o"i"e #
p171 10030401020d+3 #l=1=>el=1#%
p177 10e3.4.8.1.b+4 # token{94f} => {94} token #

p185 10.3.5.1.a."€dit L real"+14
errronrchar => errorchapr

P196 10e5e1e+7 # TAXe contained => TAXe contained #
P197 10.5.2.+5 § calls => ecallse #

p214 “"unsuppressible-suppression® o
1003.401010L => .10030401010L

p217 12.4."" '# 1062¢3410sL, m, n, 0, => #
"a"4q #£8S => 8, 10¢2¢3+10.L, M, N, 0 #
"est £1, t=>1t #
"%+ £ %+ 1002e3¢11ek = #
"%pg=" # X4:= 10.2.3.008 => #
"%x" £ns=>n
£X:= 10e203¢0e8, 10e2e3¢11.K #
p218 12.4."up" £t, t=>1t#
p224 12.5.MONAD+3 # style TALLY MONAD => style TALLY monad #

