
ISSN 0084-6198

CONTENTS

AB39.0

AB39.1
AB39. i. I

AB39.1.2

AB39.1.3

AB39. i. 4

AB39. I. 5
AB39. I. 6

AB39.3
AB39.3. I

AB39.3.2

AB39.4
AB39.4.1
AB39.4.2

AB39.4.3

AB39.5
AB39.5.1

Algol BulI,ztin no 39
FEBRUARY 1976

PAGE

Editor's Notes 2

Announcements
The Revised Report onthe Algorithmic Language
ALGOL 68 4
Conference Proceedings: 1974 International
Conference on ALGOL 68 4
Conference Proceedings: 1975 International
Conference on ALGOL 68 4
Fourth International Conference on the Implementa-
tion and Design of Algorithmic Languages 4
A68 - III (informal Information Interchange) 5
The Progressive Construction of Mode-Trees In ALGOL 68 5
Working Papers
C.H. Lindsey, Specification of Partial Parametriz-
atlon Proposal 6
B.A. Wichman, A summary of the replies to the
ALGOL 60 questionnaire IO

Contributed Papers
I.F. Currie, Modular Programming in ALGOL 68
C.H. Lindsey, Proposal for a Modules Facility
inALGOL 68
L.G.L.T. Meetens, A Note on Integral Division

13

2O
30

Revised ALGOL 68 Report ERRATA-4 33

,Important notice to LIBRARIANS

If this copy of the ALGOL BULLETIN is to be placed in a library, please

first detach pages 33-38 and put them with your copy of the "Revised Report

on the Algorithmic Language ALGOL 68" which was sent to you as a Supplement

to AB36 (these are in addition to the similar errata which you received with

AB37 and AB38). Better still, modify your copy in accordance with all the

sets of errata.

AB3 9 p i

The ALGOL BULLETIN is produced under the auspices of the Working Group

on ALGOL of the International Federation for Information Processing (IFIP WG2.1,

Chairman Professor J.E.L. Peck, Vancouver).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin

do not necessarily reflect those of IFIP and IFIP undertakes no responsibility

for any action which might arise from such statements. Except in the case of

IFIP documents, which are clearly so designated, IFIP does not retain copyright

authority on material published here. Permission to reproduce any contribution

should be sought directly from the authors concerned. No reproduction may be

made in part or in full of documents or working papers of the Working Group

itself without permission in writing from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been

provided by Professor Dr. Ir. W.L. Van der Poel, Technische Hogeschool, Delft,

The Netherlands.

The ALGOL BULLETIN is published approximately three times per year, at a

subscription of ~7 per three issues, payable in advance. Orders and remittances

(made payable to IFIP) should be sent to the Editor. Payment may be made in any

currency (a list of acceptable approximations in the major currencies will be

sent on request), but it is the responsibility of each sender to ensure that

cheques etc. are endorsed, where necessary, to conform to the currency control

requirements of his own country. Subscribers in countries from which the export

of currency is absolutely forbidden are asked to contact the Editor, since it is

not the policy of IFIP that any person should be completely debarred from

receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:

Dr. C.H. Lindsey,

Department of Computer Science,

University of Manchester,

Manchester, Mi3 9PL,

England.

Back numbers, when available, will be sent at ~3 each. However, it is

regretted that only AB32, AB34, AB35, AB37 and AB38 are currently available. The

Editor would be willing to arrange for a Xerox copy of any individual paper to

be made for anyone who undertook to pay for the cost of Xeroxing.

AB39 p 2

AB39.0 EDITOR'S NOTES

It is over a year since our last issue, and my apologies for that.

However, you will see that the bulk of this issue is taken up with matters

arising from the last Working Group meeting and with other official business.

Whilst the publication of such material is an important function of the

ALGOL Bulletin, it is not its only one and it is our desire to publish

contributed papers, letters, opinions, reports, algorithms, etc., etc. on all

aspects of Programming Languages (both existing and projected). During the

past year, such contributions have been conspicuously absent. The answer is

obvious and lies entirely in your hands, dear readers.

That Report, at last!

The Revised ALGOL 68 Report was published in December in Acta Informatica

Vol. 5, parts i, 2 and 3 (see announcement in this issue concerning availability

of reprints). It is due to be published also in SIGPLAN notices and translations

into Russian and into German are underway. It is also probable that an edition

in Braille will be produced by the Mathematisch Centrum, Amsterdam.

WG2.1 meeting, Munich, August 1975

This departed from the usual pattern of Working Group meetings insofar

as the bulk of the time was taken up with an Informal Conference with presented

papers. The aim was to survey the whole field of Algorithmic Languages in

order to identify those areas in which the Working Group could most usefully

employ its talents in the future. The same format is likely to be adopted

at the next meeting, which is scheduled to be held in France in August 1976.

The papers given at Munich, together with the discussions, are being edited by

Steve Schuman and will be distributed, courtesy of I.R.I.A., as a Supplement to

this Bulletin.

As well as looking forwards to its future responsibilities, the Working

Group also took some important decisions with regard to its past and present

work:

Modified ALGOL 60

A Revised version of the "Commentary on the ALGOL 60 Revised Report"

(AB38.3.1), by R.M. De Morgan, I.D. Hill and B.A. Wichman, was presented to

the meeting, and it was agreed that it should be published as an IFIP document.

See the article by Brian Wichman in this issue for further details.

Taken together with the Revised Report, the new Supplement defines the

language "Modified ALGOL 60" (which I suspect will soon become abbreviated to

"ALGOL 60 M"). It has been offerred for publication to the three journals

AB39 p 3

which published the original Revised Report. I hope to publish the complete

Report obtained by elaborating the Supplement in a future issue ~f the ALGOL

Bulletin.

ALGOL 68 Sub language

A draft specification for an ALGOL 68 Sublanguage (see AB37.4.4 for an

earlier draft - fortunately the present version is much more readable than that

one) was presented by P.G. Hibbard and, after a few minor changes, was released

for publication as an IFIP document. Peter Hibbard is to prepare it for

publication, but his recent removal to carnegie-Mellon University has introduced

some delay into the schedule.

The Sublanguage is intended for easy implementation on minicomputers.

Implementations corresponding to the earlier draft exist on a Modular 1 at

Liverpool and on a 370 (some mini~) at Durham. The latest version is being

implemented on a PDPII at Carnegie-Mellon.

I guess this Sublanguage is going to become known as "ALGOL 68 S".

Hardware Representation
6

A draft specification for a Standard Hardware Representation for ALGOL 68,

prepared under the supervision of the ALGOL 68 Support Subcommittee, was presented

by H.J. Boom and W.J. Hansen. This aims to facilitate portability of ALGOL 68

source texts by fixing the stropping conventions and by adhering to a minimal

set of "worthy" characters. This also was released for publication as an IFIP

document, and it will appear in the next issue of the ALGOL Bulletin.

Any actual implementer who is in urgent and genuine need of advance

information on this topic should write to H. Boom, Mathematisch Centrum,

2e Boerhaavestraat 49, Amsterdam for a copy of the latest Draft.

Subconanittee on ALGOL 68 Support

This subcommittee met for three days in Munich, prior to the main Working

Group meeting. Topics discussed included partial parametrization, hardware

representation (see above), modules and pre-compilation, and modals.

On partial parametrization, they approved a document which appears in this

issue (AB39.3.1). Note that this has only a semi-official status. It is not

defined as part of ALGOL 68, but is offerred as a suggestion to implementers

who require a language feature of this nature.

On modules and pre-compilation, there were two schools of thought - "Top

down" and "Bottom up". Two papers in this issue (AB39.4.1 and 39.4.2) present

the two sides of the argument. A working party has been appointed to examine

the pros and cons further, and to see whether a system embodying both features

would be appropriate.

AB39 p 4

AB39.1 Announcements

AB39.1.1 The Revised Report on the Algorithmic Language ALGOL 68

Reprints of the Acta Informatica edition will be available from Springer-

Varlag sometime in March, at a price of Dm 24. A certain number will also be

available, hopefully during February, from the Mathematisch Centrum, 2e

Boerhaavestraat 49, Amsterdam, at HFI 25.

AB39.1.2 Conference Proceedinss.: 1974 International Conference on ALGOL 68

University of Manitoba, Winnipeg June 1974, Editor : Peter R. King.

Copies of these proceedings may be obtained from Utilitas Mathematica Publishing

Inc., P.O. Box 7, University Centre, University of Manitoba, Winnipeg, Manitoba,

Canada R3T 2N2. The price is ~ 14.O0 (Canadian). The 320 page volume includes

invited addresses by I. Currie, P.G. Hibbard and R. Uzgalis as well as nineteen

other contributed papers and a written record of the discussion periods.

AB39.1.3 Conference Proceedings : 1975 International Conference on ALGOL 68

Oklahoma State University, Stillwater, June 1975.

The Conference was well-attended by about sixty registrants, and had about

thirty presentations during the three days. Copies of the proceedings may be

obtained from G.E. Hedrlck, Oklahoma State University, Department of Computing

and Information Science, Stillwater, Oklahoma 74074, U.S.A. The price is

u.s. ~ 12.00.

AB39.1.4 Fourth International Conference on the Implementation and Design of

Al~orithmic Languages

To be held June 14-16, 1976 at New York University, Courant Institute of

Mathematical Sciences. This Conference will be held under the auspices of the

Algol Informal Information Interchange. Previous conferences have concentrated

on the ALGOL 68 language, but many related areas have been covered and the

forthcoming conference will have a broader scope covering algorithmic languages

in general.

In addition to presentation of invited and submitted papers on aspects of

this area, there will be a series of tutorial sessions covering topics including

the following: The PL/I Basis/l definition, The SETL language. Inquiries may

be addressed to the Program Committee Chairman: Robert B.K. Dewar, New York

University, Courant Institute of Mathematical Sciences, 251 Mercer Street,

New York 10012, U.S.A. Abstracts of papers intended for inclusion in the

conference should be sent to the above address no later than April i, 1976.

Notices of acceptance will be mailed by May Ist, 1976. There will be a

registration fee of ~ 35.00.

AB39 p 5

AB39.1.5 A68 - III (Informal Information Interchanse)

There are currently about 120 members of this organisation, many of them

being active implementers. Currently, a questionnaire is being circulated to

establish the progress and usage of the various implementations under way. An

annual conference is organised (see separate announcement for details). A

computerised bibliography is maintained and a Repository of ALGOL 68 related

papers and technical reports is kept in the Computer Science archives at UCLA

(photocopies available at about ~ 0.05 per page). Items for inclusion in the

bibliography and spare copies of Reports etc. for depositing in the Repository

are always welcome.

Further details from: R. Uzgalis, Computer Science Department, School of

Engineering and Applied Sciences, U.C.L.A., Los Angeles, California 90024, U.S.A.

AB39.1.6 The Prosressive Construction of Mode-Trees in ALGOL 68

Ph.D. Thesis by G.S. Hodgson, University of Manchester, England. Jan. 1975,

174p. Microfiche copy available from C.H. Lindsey, Department of Computer Science,

University of Manchester, Manchester MI3 9PL, England, £0.80 (or ~ 2.00 - dollar

bills preferred to cheques).

"This thesis describes the progressive construction of mode-trees Representing

ALGOL 68 modes. Intermediate Incomplete Representations are permitted until the

full Representations can be determined. The influence of coercion on the method

of Representation of modes is indicated.

"We describe an Equivalence Algorithm for ensuring that such Representations

(or any parts of such Representations) are Unique. This is essential for the

subsequent comparison of modes to be straightforward.

Internal-Ordering for the component modes of a union.

segments or programs may then be handled simply."

Also given is a predefined

Separately compiled

Also, still available, "The Transport Section of the Revised ALGOL 68

Report" by R.G. Fisker (see AB37.1.3), £0.40 (or ~ 1.00).

AB39 p 6
AB39.3.1Specification of partial parametrization proposaL.

C.H.Lindsey (university of Manchester)

The foLLowing s p e c i f i c a t i o n has been reLeased by the IF IP
working Group 2.1 Standing Subcommittee on ALGOL 68 Support,
w i th the a u t h o r i z a t i o n of the working Group.

This proposal has been s c r u t i n i z e d to ensure tha t
a) it is strictly upwards compatible with ALGOL 68,
b) i t is cons is ten t wi th the phi losophy and orthogonat

framework of t ha t Language, and
c) i t f i l l s a cLearLy d i sce rn ib le gap in the expressive

power of t ha t Language.

In re leas ing t h i s extension, the i n t e n t i o n is to encourage
impLementers experiment ing wi th features s im i l a r to those
described below to use the fo rmu la t ion here given, so as
to avoid p r o l i f e r a t i o n of diaLec~ts.

{{ALthough rou t ines are values in ALGOL 68, and can the re fo re be
~ielded by other rou t i nes , the p r a c t i c a l usefuLness of t h i s f a c i L i t y
~s Limited by scope r e s t r i c t i o n s . Consider:

=c_oc_ f = (ce_a_~ x) =~.o~ (EeaL) cga_t.: (ce_a_i y) c.ea__t: x + y;
gco_~ (c.e_.~L_) tea_L_ g := f (3) ;
x := g (4)

This at tempts to assign to g the rou t i ne "add 3". i t does not work
because the body of the rou t i ne is s t iLL fundamentaLLy the r o u t i n e - t e x t
(~eaL y) ~eaL : x + y which expects to f i nd the value x (i . e . 3) on the
st~ck in the form of an actuaL-parameter of f , and by t h i s t ime f is
f i n i shed wi th and i t s stack Level has disappeared. The problem ar ises
whenever a r o u t i n e - t e x t uses i d e n t i f i e r s declared gLobaLLy to i t s e l f
and the L i m i t a t i o n is expressed in the Report by making the scope of a
rou t ine dependent on i t s necessary environ (7 . 2 . 2 . c) . Here is an
attempt at f unc t i ona l composit ion which f a i l s to work for the same
reason:

EEo_E compose = (EC~E (c-eaNL) c-ea.~ f , g) EC~E (or.a-k) ~e-a.k:
(cga__t x)c_ea_~: f (g (x));

EE~ (E_ea_~) Ega__L sex = compose (sqr±, exp)

cLearLy, if the restriction is to be Lifted, a routine value has
to have associated with it copies of these gLobaL values. UnfOrtunateLy,
their number is in general indeterminable at compile time, and so the
implementat ion of such values must be s i m i l a r to t ha t of muLtipLe
values re fe r red to by fLexibLe names (2 . 1 . 3 . 4 . f) r e q u i r i n g , in most
implementat ions, the use of the heap.

In t h i s v a r i a n t , aLL the intended gLobaL values appear to the
r o u t i n e - t e x t as i t s own formaL-parameters. At each caLL, some or aLL of
these parameters are provided wi th actua l vaLues, r e s u l t i n g in a rou t ine
wi th tha t number of parameters fewer. ULtimateLy (possibLy a f t e r
several caLLs) a rou t i ne wi thout parameters is obtained and, i f the
context so demands, deproceduring can now take p lace. Thus, aLL caLLs in
the o r i g i n a l Language t u rn out to be paramet r iza t ions foLLowed by
immediate deproceduring, but t h e i r e f f e c t is the same. Here are
some exampLes:

1)

2)

3)

p.Co_~ f = (ce_a__t x, y) ~e_a_i: x + y;
~c£~ (c_ea__L) c_e~ g := f (3 ,) ;
X := g (4) ~ or X := f (3,) Ca)

AB39 p 7

~o~ compose = (~££ (tea l)=eat f , g, teal x)~e_a_!: f (g (x))~
~Coc (teal) ~eat sex = compose (sqrt, exp,)

o~ ~ = (Qco_c_ (c_ea_C_) ~eaL_ a, in% b) ~Coc. (~ea~) ~_ea~:
((~Co_~ (~e~L) ~ea~ a, ~ $ b, c_ea_~ p) C.ea_~:

(teal x := I; %Q b do x -:= a(p) £.g; X)) Ca, b,);
~_eat theta; pplnt ((cost2)(theta) + (slnt2)(theta)) }}

{{A r o u t i n e now inc ludes an ex t ra L o c a l e . } }

2 . 1 . 3 . 5 . Rout lnes

a) A " r o u t i n e " i s a va lue composed of a r o u t i n e - t e x t { 5 . 4 . 1 . 1 . a , b } ,
an env i ron { 2 . 1 . 1 . 1 . c } and a Locale { 2 . 1 . 1 . 1 . b } . {The Locale
corpespor~ds to a 'DECSETY' r e f l e c t i n g the f o rma l -pa rame te rs , i f any,
o f the r o u t i n e - t e x t . }
b) The mode of a r o u t i n e i s some tPROCEDURE'.
c) The scope of a r o u t i n e i s the newest of the scopes of i t s env i ron
and of the va lues , i f any, accessed { 2 . 1 . 2 . c } i n s l d e i t s l o c a l e .

{{A routine-text yields the new style of routine.}}

5 . 4 . 1 . 2 . semant ics

The yleLd of a routine-text T, in an environ E, is the routine
composed of

(i) T,
(11) the environ necessary for {7.2.2.c} T in E, and
(i i l) a Locale cor respond ing to "DECS2' i f T has a d e c l a r a t i v e -

de f in ing -new-DECS2-bp ie f -pack , and to 'EMPTY w o the rw ise .

{{Host of the remaining changes to the Report needed to incorporate
this f a c i l i t y are in section 5.4.3 (ca l ls) . } }

5.4.3. calls (with partlaL parametrization)

{A c a l l i s used to p rov ide ac tua l -pa ramete rs to match some or a l l
o f the fo rma l -pa ramete rs of a r o u t i n e . I t y i e l d s a r o u t i n e w i th
co r respond ing l y fewer fo rma l -paramete rs or w i t h none at a l l , i n
which case the y i e l d i s u s u a l l y sub jec t t o deprocedur ing (6 . 3) -
ExaMp Les :

y ..= sin (x)
PRDC REAL ncosslni = (p I ncos I n s l n) (i) .
p r i n t ((s e t char number (, 5) , x)) . }

5.4.3.1 Syntax

A) PARAhSETY :: PARAMETERS ; EMPTY.

AB39 p 8

a) procedure y i e l d i n g HOlD NEST caLL{SD} :
meek procedure w i th PARAMETERS1 y i e l d i n g NOID NEST PRIMARY{5D},

ac tua l NEST PARAMETERS1 Leaving EHPTY{ c, d, e} b p i e f pack•
b) procedure wi th PARAMETERS2 y i e l d i n g MOlD NEST ca l l {SO} :

meek procedure w i th PARAMETERS1 y i e l d i n g HOlD NEST PRIMARY{5D},
ac tua l NEST PARAMETERS1 Leaving PARAHETERS2{c,d,e,f}

b r i e f pack•
c) ac tua l NEST PARAMETER PARAMETERS Leaving

PARAMSETY1 PARAMSETY2{a,b,c} :
actual NEST PARAMETER Leaving PARAMSETYI{d,e},

and aLso{94f} token,
ac tua l NEST PARAMETERS Leaving PARAHSETY2{c,d,e}.

d) ac tua l NEST MODE papameter Leaving EMPTY{a,b,c} :
strong MODE NEST unit{32d}.

e) actual NEST PARAMETER Leaving PARAMETER{a,b,c} : EMPTY.

f) * ac tua l MODE parameter :
ac tua l NEST MODE parameter Leaving EMPTY{d}•

g) , dummy parameter :
ac tua l NEST PARAMETER Leaving PARAMETER{e}.

{Examp Les:

a) set chap number (stand out , 5)
b) set chap number (, 5)
c) , 5
d) 5 }

5 • 4 • 3 • 2 • S emant ics

a l) The y i e l d W of a c a l l C, in an env i ron E, is determined as
foL Lows:

Let R {a r o u t i n e } and V l , . • • , vn be the { c o l l a t e r a l } y i e l d s of
the PRIMARY of C, i n E, and of the c o n s t i t u e n t a c t u a l - and dummy-
parameters o f C, i n an env i ron E1 es tab l i shed { L o c a l l y , see 3 . 2 . 2 . b }
around E, where the y i e l d of a dummy-parameter is "absent " ;

W is { the r o u t i n e which i s } the y i e l d of the "pa rametp i za t i on " {a2}
~f R with V1, ... , Vn;

except where C i s the c o n s t i t u e n t c a l l of a deproceduPed-to-MOID-
h a l l { 6 . 3 • 1 . a } , i t i s r equ i red t h a t W be not newer i n scope than E
{ thus , ~2c_ (£ha~, ~ 9) ~££L. cs = char i n s t r i n g (, L££ ~ ,)
is undefzned but q := chap in s t r i n g ("A" , ~_oc. ~ , s) i s n o t } .

a2) The y i e l d W of the "papametPizat ion" of a r o u t i n e RO wi th values
Yl, ... , vn is determined as follows:
. Let TO, EO and LO be, r e s p e c t i v e l y , the r o u t i n e - t e x t , the env~on
and the Locale of RO, and Let LO correspond { 2 • 1 • 1 . 1 . b } to some
IDECS 0 = ;

Let L1 be a new Locale coppesponding to 'DECSO', and Let the va lue,
i f any, accessed by any 'DECO' i n s i d e LO be accessed a lso by t h a t
'DECO ' inside L1;
• Let 'DECSI' be a sequence composed of all those 'DECO's enveloped
by 'DECSO' which have not {yet} been made to access values inside L1,
taken in their order within 'DECSO'=
FOP i = I, -.- , n,

If vi is not absent {see al},
then the i-th 'DECI' enveloped by 'DECSI' is made to access vi

inside L1
{otherwise, the i-th 'DECI' still does not access anything;}

• W is the routine composed of TO, EO arc L1.

AB39 p 9

{A r o u t i n e may be parametr ized in several stages, upon each occasion
the y i e l d s of the new actual -parameters are made to be accessed ins ide
i t s Locale and the scope of the r o u t i n e becomes the newest of i t s
o r i g i n a l scope and the scopes of those y i e l d s . }

b) The y i e l d W of the " c a l l i n g " of a r ou t i ne RO in an environ E1 {see
5.4.2.2 and 6.3.2} is determined as foLLows:

Let TO, EO and hO be, r e s p e c t i v e l y , the r o u t i n e - t e x t , the environ
~nd the Locale of RO;
. Let E2 be a {newly es tab l i shed} environ, newer in scope than El ,
composed of EO and LO {E2 i s LocaL}t
. w is the y i e l d , in E2, o f the un i t of TO.

{Consider the f o l l o w i n g ser iaL-cLause:
PROC sameLson = (INT n, PROC (INT) REAL f) REAL :

BEGIN LONG REAL S := LONG O;
FOR i TO n DO S +:= LENG f (i) f 20D ;
SHORTEN Long sqr t (s)

END;
y := sameLson (m, (INT j) REAL : Xl [j]) .

In tha t con tex t , the Last deprocedured- to- reaL-calL has the same
e f f e c t as the dep rocedu red - to - rea l - pou t i ne - t ex t i n :

y := REAL : (
INT n = m, PROC (INT) REAL f = (INT j) REAL : Xl [j] ;
BEGIN LONG REAL S := LONG O;

FOR i TD n DO s +:= LENG f (i) t 20D;
SHORTEN Long sqr t (s)

END).
The t ransmiss ion of the actua l -parameters is thus s i m i l a r to the

e labora t ion of i d e n t i t y - d e c l a r a t i o n s (4 . 4 . 2 . a) ; see also establ ishment
(3 .2 .2 .b) and a s c r i p t i o n (4 . 8 . 2 . a) . }

{ { t ; iuor changes are requ i red at other places in the Repor t . } }

({The t h i r d b u l l e t of 5 .4 .2 .2 (semantics of formulas) i s replaced by}}
Let R] be { the r o u t i n e which i s } the y i e l d of the paramet r i za t ion

i 5 . 4 . 3 . 2 a2} of R wi th V l , . . . , Yn;
. W is the y i e l d of the c a l l i n g { 5 . 4 . 3 . 2 . b } of R1 i n E l ;

{ {5 .4 .4 .2 .Case B, 1 0 . 3 . 4 . 1 . 2 . c and 10 .3 .4 .9 .2 must be modi f ied to
show tha t the rou t ines there created are composed, a d d i t i o n a l l y ,
from a vacant Locale { 2 . 1 . 1 . 1 . b } . } }

AB39 p iO

AB39.3.2 A Summary of the Replies to the ALGOL Bulletin questionnaire

B. A. Wichmann

Sixteen replies were received, twelve from implementors and four from

interested users. For each of the fifteen features, they were asked (a)

does your implementation already include this feature, (b) would the

implementation be invalidated by the change, (c) do you approve of the

proposed change, (d) if the proposed change were made official, is it

probable that your implementation would be brought into line? The summary

is as follows:

(a) (b) (c) (d)
Item
number already invalidate approve change

I 9Y 5N : OY 12N : 16Y ON : iY 3N :
2 7Y 7N : 2Y iON : 15Y iN : iY 5N :
3 6Y 8N : IY iON : 14Y 2N : IY 5N :
4 8Y 5N : 5Y 6N : 13Y 2N : OY 4N :
5 iY 13N : IOY 3N : 9Y 7N : IY 8N :
6 IOY 4N : 4Y 7N : IIY 3N : 2Y iN :
7 12Y 3N : iY IIN : 16Y ON : 3Y ON :
8 12Y 3N : 2Y 1iN : 15Y IN : IY ON :
9 13Y 2N : iY 12N : 16Y ON : IY 2N :
i0 2Y 13N : 7Y 5N : 5Y 1iN : IY 7N :
ii 5Y 8N : 4Y 7N : 9Y 5N : iY 7N :
12 14Y IN : OY 13N : 15Y iN : IY iN :
13 2Y 1iN : 5Y 7N : 14Y 2N : 3Y 6N :
14 2Y ION : 8Y 4N : 6Y 8N : IY 7N :
15 2Y 1IN : 8Y 5N : 9Y 6N : IY 7N :

Number of questionnaires 16

Hence there was unanimous approval for statico~_ and comments including

characters (items I and 7). There was unanimous approval for removing

integer labels (item 9) even though it has been implemented. Similarly,

substantial approval was given to a number of items which would invalidate

only a small minority of systems. In this category are: only fixed bounds

to own arrays (item 2), own ~ariables initialised to zero or false (3),

controlled variable to remain defined on exit (6), strings to consist of

characters rather than ALGOL basic symbols (8), complete specification of

formal parameters (12), environmental enquiries (maxreal, minreal, maxint

and epsilon, item 13). This leaves six items upon which opinions were

divided.

AB39 p ii

4. step expression evaluated once per loop.

This is an issue upon which views have differed for many

years. The formulation proposed has approval from all but

two replies. It is relatively efficient and simple to define.

5. Controlled variable cannot be subscripted.

The majority approved of this change in spite of the fact

that only one implementor said he had the feature. A

majority of the working group favours this change, and hence

Modified ALGOL 60 excludes subscripted control variables.

I0. <integer>÷<negative integer> undefined.

We were perhaps a little too radical here but the formulation

has the advantage of not requiring a change in the subsets.

An alternative formulation similar to the one in the ECMA

subset was suggestedbut WG2.1 decided to retain the proposal

in the ALGOL Bulletin.

ii. o~undefined switch designator undefined.

Again a majority approved although a minority of compilers

contained this feature (according to the replies). WG2.1

approved of this change in a vote taken at Breukelen (1974).

14. IFIP input/output.

These do not seem to be much liked. However, many more

approved of them than had them in their implementation. As

a simple, rudimentary system rather than a complete system

there does not seem to be any alternative. There appeared

to be a misunderstanding that we were proposing this as a

complete I/0 system. We are not, but merely providing a

basic system from the existing IFIP procedures.

15. Additional procedures outterminator, fault and stop.

Again a majority approved in spite of their absence in

current systems.

It would be unwise to read much more than this into the replies since

some inconsistencies exist.

At the last WG2.1 meeting at Munich, it was decided ~hat after various

amendments had been made, the document should be published as a "Supplement

to the ALGOL 60 Revised Report". This supplement proposes changes to the

Revised Report resulting in a "Modified Report on the Algorithmic Language

ALGOL 60". A last minute amendment includes the ability to concatenate

AB39 p 12

strings. This is to allow spaces to stand for themselves within a string

as proposed in the Draft ISO Technical Report 1972.

We should like to thank those who replied to the questionnaire, namely:

A.J. Amorison, P. Bacchus, Lars Blomberg, W.M. Gentleman, Sakari Hayrynen,

D.J. Leigh, Anne Rogers, Andrew J. Skinner, J.F. Smith, J.R.W. Smith, P.D.

Stephens, Grace H.J. Sturgess, G.A. Tebling, Martyn Thomas, Kenneth G.

Walter and T.P.T. Williams. Additional correspondence was received from

D.J. Cairns, C.A.R. Hoare, R.S. Scowen, D. Simpson, Garry J. Tee and J.W.

van Wingen.

AB39.4. I

MODULAR PROGRAMMING IN ALGOL 68

AB39 p 13

I F Currie
18 6 75

l Design aims

A. The modular compilation system should aid and encourage one to wrlte well

structured top-down programs. For example, the following "module" (not 68-R)

could be regarded as a model for a large class of problems:

program= (int in;

input (in);

int answer;

process (in, answer);

output (answer)

);

Our compiling system should be able to compile this (or something very like it)

without reference to what input, process and output actually do, or how they are

constructed. We should be able to run program by applying any one of a set of

actual modules (compiled later) into each of these formal positions. These actual

modules should be able to "see" only those indicators presented to them in program,

eg an actual module for output should know what answer is but not what in is, and

certainly nothing about the dynamic construction of prosram.

B. To be forced to always observe a top-down mode of working would be quite

intolerable for certain programming tasks. For example, the creation of libraries

of procedures is naturally a bottom-up activity. Similarly the abstraction of data

structures by providing a suite of procedures operating on concrete data objects

follows bottom-up thinking. ALGOL 68 is not very good for this kind of abstraction

since a change in the mode of the concrete data object will generally invalidate

any previously compiled module using the abstraction. This rather weakens the

reasons for abstracting in the first place. However, the module which defines the

abstraction should be one which allows other modules (as yet unwritten) to use some

set of modes, procedures or values declared within it. Note that the current 1900

68-R module system is entirely bottom-up.

AB39 p 14

C. The interfaces between modules (ie those indicators passed down at the formal

positions in the top-down case and those passed up in the bottom-up case) should

be concise and explicit. In other words, the fact that two modules are fitted

together does not imply that one module knows all the indicators of the other, but

only those which are explicitly mentioned. The purpose of both the top-down and

bottom-up approach is to minimise the possibility of error by restricting information

flow along well defined directional channels.

D. The only factor in deciding whether two independently compiled modules fit

together is that both agree on their mutual interface. Clearly it must be

impossible to fit together incompatable modules.

E. The recompilation of a module should only invalidate a previous compilation of

another module if it significantly changes their mutual interface. The meaning of

significant in this context will depend on the level at which the linkage of modules

is performed. In our system where the linkage is done at a quasl-binary level, the

only insignificant change to the interface is its extension by addition of other

indicators leaving the original indicators unchanged in mode and name.

2 The evolution of the system

2.1 Top-down

It is fairly clear that the top-down requirement (as expressed by our model program)

could be met by existing procedural structures. Thus the module program could be

a procedure with three procedure parameters:

proc program = (proc (ref int) input, proc (int, ref int) process, proc (int) output):

(etc)

To run program, we simply call it with the appropriate actuals of the correct mode.

If these actual modules were themselves structured, then it would be necessary to

partially parameterlse them to get the modes straight. The modules in this system

are simply pure routine-denotatlons and a module which can be run as an independent

program is simply a proc void. The elegance of this system is somewhat offset by

the following snags:

AB39 p 15

1 We c a n no t pas s mode and o p e r a t o r i n d i c a n t s as p a r a m e t e r s o f p r o c e d u r e s .

2 I f e e l t h a t i t i s p r e f e r a b l e t o pas s i n f o r m a t i o n be tween modules by name and

mode rather than position and mode as in proc calls. This is particularly true

where different groups of progra~ers are involved.

3 The routine denotations for modules tend to have rather cumbersome and opaque

parameter packs. Further, partial parameterisation is a very heavy-handed way of

doing what will generally be a quite simple linkage job.

In order to get over these snags and still preserve the elegance of the original

procedural construction, two new unitary clause constructions have been introduced.

The first replaces the formal proc parameter call (eg input (in) in program) and

at the same time defines its interface; the other replaces the call of a procedure

which is a module (eg program itself). Thus, the module program becomes (now in

68-R 2900)

program= (int in;

formal input (in);

int answer;

formal process (in, answer);

formal output (answer)

)

A runnable program could then be constructed by supplying actuals to the formals

of program:

runnable program ! = (call program (input = (read(in)),

process = (answer :ffi 2 * in),

output ffi (print(answer))))

The bodies substituted for input etc in this call of program would more usually be

independently compiled thus:

input module = a_~ input of program (read(in))

making another runnable program by compiling:

runnable program 2 = program (input ffi input module, ... etc)

I shall call input of program the context of input module. Note that the call

AB39 p 16

construction is just another unitary clause and the bodies directly supplied for

substitution to its parameters as in runnable program I can access any indicator

normally available t o that unitary clause.

2.2 Bottom-up

The bottom-up module seems to be adequately covered by saying ~hat it is an

unbracketed list of declarations terminated by a keep list of indicators to define

the interface, eg

lists =

mode element - union (int, list),

cell = struct (element hd, tl),

list = ref cell;

list nil = nil;

proc cons = (element a, b) list: cell := (a, b);

proc hd = (ref list a) element: hd o__f a;

proc tl = (ref llst a) element: tl o__f a;

keep element, list, nil, cons, hd, tl

The indicators kept in lists may be used in any other module which, makes the new

declaration

access lists

The range of these indicators will be the same as them of ~,, 3ndicator declared at

this point. This sounds simple, but unfortunately hlde~ a multitude of pitfalls.

These are malnly due to dlfficulties in deciding just when the declarations in

such a module are elaborated. If we say that the declarations are elaborated at

the access, then different modules using lists would have .!~:~er~t declarations for

each of its kepts; also, the scope of their values might be unduly restricted. On

the other hand, if the declarations are to be elaborated at some global level it

appears that an ordering must be applied to the elaboration o~ different

accessed in a program, since presumably one such module can access another. Note

that this ordering is not only due toone module directly accessing another but

also, because of the possibility of side effects, of both access ~[~d ~odule.

AB39 p 17

On the 1900 68-R system this ordering was defined by the order of the original

compilation of the modules; this ordering must be considered unsatisfactory as it

was the root cause of most of our difficulties in the practical use of the system.

In order to side-step this dilemma, I propose to allow only those declarations

which can be elaborated at compile-time to form part of a bottom-up module. This

is not quite as drastic as it sounds; the allowable declarations are declarations of

modes without dynamic parts, procedure declarations, identity declarations identifying

constants, and accesses to other modules. The module "lists" is a legal bottom-up

module.

Another point that arises in the bottom-up mode of working is the definition of

the bottom. Clearly the module "lists" can be accessed from anywhere, but one could

also imagine a similar module which could only be accessed in some more limited

context. For example we might wish to write a suite of procedures in the context

input o_~ program which could only be accessed in one or more of the actuals supplied

for input of program. The only difference it would make in this instance is that

the procedures in the suite could use the variable in, derived from program.

2.3 The System context

It would be highly desirable if we could implement all of the standard prelude and

system library using the same ideas and software as for user-defined modules. In

order to do this, all user modules are considered to be compiled in a global system

context which declares the variables in the standard prelude. There are very few

of these variables (standln and standout are the most important), and they form

the interface which is the system context. As this context implicitly surrounds all

user modules, all of the variables in the system context are automatically available

to all modules; similarly indicators kept in bottom-up modules in the system library

will be automatically available - the appropriate access declaration will be inserted

where necessary. The system module which provides the global context will look

something like:

AB39 p 18

system

(

access open module; co introduces the mode charput, and procedures open and close;

the access is not strictly necessary

since open module is in the system library c._o

charput standln, standout;

open (s t a n d i n , e t c) ; open (s t a n d o u t , e t c) ;

f o rma l u s e r (s t a n d l n , s t a n d o u t) ;

c l o s e (s t a n d l n) ; c l o s e (s t a n d o u t)

)

In o r d e r . t o run a u s e r module , x s a y , t he c o m p i l e r / l o a d e r w i l l g e n e r a t e a

c a l l s y s t e m (u s e r ffi x) .

S umma1~F

The s y n t a x o f a module i s :

Hodule ÷ modu le ld l = {Context} Body;

C o n t e x t ÷ a . . ~ f o r m a l i d l o_~module ld2 ;

The module given by moduleid2 must have already been compiled and must

contain a formal call on formalidl which will give a set of indicators to the

body.

Body ÷ Tdbody,

Bubody,

Completed module;

T d b o d y ÷ Closed c l a u s e ;

A Tdbody may c o n t a i n fo rma l c a l l s and i t s C losed c l a u s e i s v o i d e d .

Bubody ÷ C o n s t d e c l l s t Keep I n d l c a t o r l i s t ;

A Buhody may n o t c o n t a i n fo rma l c a l l s .

C o n s t d e c l i s t i s a s equence o f c o n s t a n t d e c l a r a t i o n s (s e e 2 .2) s e p a r a t e d by

s e m i - c o l o n s .

AB39 p 19

In addition the syntax o f Unitary clause is extended by:

Unitary clause ÷ call Completed module

Formalcall;

Completed module ÷ moduleid3 {(Formal identification list)};

Formalldentlflcatlon ÷ formalld2 = Closed clause,

formalld3 = Completed module;

Moduleid3 must have already been compiled (either at the system context or

at formalldl of moduleld2), has a Tdbody, and all of its formals must be in

the formal identification list. The indicators specifled by formalid2 in

moduleid3 are available in the closed clause. The outer module in the

completed module identified with formalid3 must have been already compiled

at formalid3 of moduleid3.

Formalcall ÷ formal formalid4 (Indicator list);

formalid4 becomes a formal of moduleldl. When formalid4 is identified with

an actual, the indicators in the Indicator list become available to that actual.

Also the syntax of Declaration is extended by:

Declaration ÷ access moduleld4;

Moduleid4 must have already been compiled (at either the system context or at

formalldl o fmoduleid2) and have a Bubody. The indicators kept in that Bubody

are available in the current range.

Indicators arising from the standard prelude or system library will be available

to modules without extra context or access declarations.

AB39 p 20

AB39.4.2 Proposal for a Modules facilitE in ALGOL 68.

C. E. Lindsey.

CHL 75-05-12

This propossl arises from Schuman's paper "Toward Modular Progra,,,~ng in High-

Level Languages" (AB37.4.1), together with discussions ~lth ' ~

Guy in Manchester during Nm~r 1974, with Dewar at Breukelen, at the Support Sub-

committee in Boston in January 1974, and afterwards with Dewar in Chicago. The proposal

is described mainly by way of examples. A formal specification is given afterwards.

I. Module declarations.

A module-declaration declares a module-indication and ascribes a module to it.

A module consists of a module-text and an environ (cf. routines).

(module a = int i .'= O; ~roc c = ~ void: i ~:= uJ

2. Invocations.

An invocation identifies a module-text declared earlier (possib~ in a different

compilation).

invoke 4;

Basically~ an invocation is a declaration that causes certain indicators to become

visible in the current range and also~ when it is elaborated, causes space to be

reserved and ascriptions and initiaiizaLio~ to be performed (just 1~e any other

declaration in the language). It follows tha% a given modolo m+~ no~ be invoked at more

thanone place within a given reach, nor may it attempt to declare indicators already

known within that reach.

3" Accessions.

An accession identifies an invocation made earlier (an invocation is thusboth an

applied occurrence and a defining occurrence of its module-indication). It causes the

indicators declared earlier to become visible again (overriding any intermediate re-

declarations of those indicators), but it does not involve any re-elaboration of their

declarations.

The example below shows how a module-declaration is identified by invocations

(dotted lines), and how invocations are identified by accessions and by other indicators

(full lines).

AB39 p 21

module a = (real x " 0)! , ,, o~

T ~

invoke a; x := I!, proc void pp;

(invoke a; x := 2;

(real x := 31

print

)

print(i

print (~)

)
) #1.o#

I
I
I

I

I

' 1 I

'(access A! print(x)); proc p = Eoi~:,
j ~ T 1

• !

(Invoke a; x := 51

p! ~# prints 2.0 #

print(k) # 5.0 #

)

• 1 # 3.0 #

#2.0#

Observe how the identification of "access a" determines the scope of the procedure "p",

so that "pp := p" would have been illegal. Observe also that both module- and invocation-

definitions of "a" occur in the outer reach. This is allowable because, even though these

are both defining occurrences of "a", the 'QUALITY's so defined are not related to each

other.

4. Hidden.

Within a module-text, declarations may be hidden (labels are hidden automatically).

Such declarations are elaborated and are visible from within the module-text, but they

are not rendered visible outside the invocation. If a module-text declares a variety

of procedures, these ms~v communicate amongst themselves by means of hidden global

variables, with no possibility of the user interfering with those variables himself.

This is comparable to, but more powerful than, the o_~. facility of ALGOL 60.

The module r below, when invoked, makes available a procedure random, but not the

underlying variable which remembers the current position in the pseudo-random sequence.

module r = (hidden real lastrandom := 0.5;

proc random = real: (... ! lastrandom :))!

invoke r;

print(random) # but not print(lastrandom) #

Lastrandom is not now visible, but its scope is clearly that required.

Frequently, in order to use the hidden facility, one has to declare a module which

is then only invoked upon one occasion. This can be avoided by immediate invocation of

a module-text.

AB39 p 22

invoke (hidden real lastrandcm : = 0.5;

proc random--real: (... ! is~trandom :)) !

print(random) ~ but not print(lastrandom)

This also makes it possible to render a whole group of declarations in a module

invisible without having to write the word "hidden" in front of each one.

module a = (hidden invoke (int privatel;

proc private2 = void: privatel := public2)!

invoke (int publicl;

proc public2 = void: (private2; print(privatel)))) !

invoke a;

publicl := 2! public2

This feature would have been useful when writing the standard-prelude of the Revised

Report.

~. Provo.cations.

Partial compilation of programs is needed for two purposes: for assembling large

particular-programs piecemeal, and for constructing libraries for use by many

particular-programs. The latter problem raises the particular difficulty of where to

invoke a module that may be used at several places in a particular-progTam, perhaps

including invocations of other library modules which use it at second hand. It may be

important that it be invoked only once, so as to get only one copy of any global

variables that it may create. Contrariwise, it must be invoked afresh in each particular-

program - otherwise all particular-programs will share the same globals. Such library

modules should therefore be conceived as having been declared in the particular-prelude,

rather than in the library-prelude.

Sup~oose that the library modules 'vibr~tions' and 'stresses' both make use of the

library module 'matrices'. However, the user of these modules is presumed to be unaware

of the fact and will not therefore invoke 'matrices' himself (unless he needs it for

some other purpose of his own). It is required that only one invocation of 'matrices'

should be brought into existence, whether the user invokes 'vibrations', or 'stresses',

or his own use of 'matrices', of any combination thereof. The particular-prelude

therefore contains:

module matrices = (...); provoke matrices;

module vibrations = (hidden access matrices; ...)! provoke vibrations;

module stresses = (hidden access matrices! ...); provoke s tresses~

Here, "provoke matrices_" serves as a defining occurrence for "access matrices" to

identify, but its elaboration will not be triggered unless such an "access matrices"

actually occurs (moreover, if the 'kccess matrices" is itself a constituent of a module-

definition, there must also occur an invoke or a triggered provoke to trigger that).

AB39 p 23
So, we now have:

begin # of the particular-program

access vibrations;

access matrices # because the user wanted to use it for himself ~ !

co•

end

whereupon the "provoke matrices" and the "provoke vibrations" (but not the "provoke

stresses") in the particular-prelude are triggered (but the body of matrices is

elaborated only once).

The normal convention should be for libraries to declare modules and to provoke

them• Users should then use access rather than invoke, unless they specifically want

a private copy of the module.

A provocation may also be used within a particular-program (here, it would be most

unlikely not to be triggered) when it is required that declarations should be elaborated,

but that their indicators should not be made visible until some inner range.

Note that an access always identifies an invoke or a roro~, and that an invoke or

a provoke identifies a module•

6" Partial compilation.

Even though a particular-program is made up of several separately compiled parts,

there must still exist a conceptual complete particular-programmade of some

concatenation of its constituent texts (parhaps with a few enclosing begins and ends

provided by the system). This conceptual complete particular-program is the one whose

meaning will then be defined by the Report• The manner in which pre-compiled modules are

filed awry and retrieved by the operating system is not defined in this proposal, but

should be controlled by pra~mats.

begin

module a ~. in album A ~. = (...)1 ~ Ist

module b ~.~ in album B ~. = (...)1 ~ 2nd

compilation

compilation

end

be~.n 1 invoke a ~. from album A ~., b p~. from album B p~.;

e•.

e n d

final compilation

AB39 p 24

Modules m~v make use of declarations in other modules provided, presumab~r,

that they do not ask for information in modules not yet compiled.

begin

module a =

module b =

beACh

proc void pp!

real y;

(,invoke b! skip) ;

PP
e~!

berlin

access a!

proc p = voi..._..~., print(y)!

pp := p

end;

invoke i; skip

end

n

w

i

m

Ist compilation

2nd compilation

final compilation

In the second compilation, access ~ identifies (with some help from the loader) the

invoke a right at the end, but it relies on the previous compilation of module a

for the declarations of "pp" and "y". Although the first compilation invokes b (which is

not yet compiled), the declarations of b are not needed. Provided the compiler is able

to recognise the special case "(invoke b; skip)", no problems need arise.

AB39 p 25
FormuLat ion of module proposaL.

{{~ioduLe d e c l a r a t i o n s and i nvoca t i ons are new kinds of d e c l a r a t i o n s .
New kinds of en t ry in the nest are t h e r e f o r e needed.}}
1.2.3.

E) DEC :: ... ; MODULE TAB ~ SUBSIDIARY TAB.
L) MODULE : : module DECSETY TALLY.
N) SUBSIDIARY : : s u b s i d i a r y DECSETY TALLY.

4 . 8 . 1 .
F) QUALITY : : . . . ; NODULE ~ SUBSIDIARY.

{{'NODULE TAB'S wiLL be i n t roduced i n t o the nest by moduLe-decLarat ions.
'SUBSIDIARY TAB's wiLL be i n t roduced by INVOCATIONS.}}

{{New k inds of i n d i c a t o r are needed to i d e n t i f y these new p r o p e r t i e s . } }
4 . 8 . 1 .

A) INDICATOR : : . . . ; module i n d i c a t i o n .

{{~oduLes are asc r ibed t o moduLe- ind ica t ions by means of module-
d e c l a r a t i o n s . } }

4.9. NoduLe declarations

4 . 9 . 1 . Syn tax

a) NEST1 moduLe d e c l a r a t i o n of DECS{41a} :
moduLe{94d} token, NEST1 module j o i ned d e f i n i t i o n of DECS{41b}.

b) NEST1 module d e f i n i t i o n of module DECSETY TALLY TAB{41b} :
module DECSETY TALLY NEST1 d e f i n i n g module i n d i c a t i o n

w i t h TAB{48a},
where <TAB> i8 <boLd TAG>,
i s de f ined as{94d} token ,
NEST1 TALLY module t e x t e x h i b i t i n g DECSETY

d e f i n i n g new DECSETY PROPSETY{c}.
c) NEST1 TALLETY i module t e x t e x h i b i t i n g DECSETY

d e f i n i n g new DECSETY PROPSETY{b,4Ab} :
NEST1 new DECSETY PROPSETY TALLETY module se r ies

w i th DECSETY w i t hou t PROPSETY{d} STYLE pack.

d) NEST2 TALLETY module s e r i e s w i t h DECSETY w i thou t PROPSETY{C} :
s t rong vo id NEST2 u n i t { 3 2 d } , go on{gAf} token,

NEST2 TALLETY module s e r i e s w i t h DECSETY w i thou t PROPSETY{d} ;
where <DECSETY> i s <DECSETY1 DECSETY2>,

NEST2 TALLETY1 decLara t ion of DECSETYl{41a}, go on{94f} token,
NEST2 TALLETY2 module s e r i e s

w i th DECSETY2 w i t hou t PROPSETY{d},
where TALLETY i s the g rea te r of TALLETY1 and TALLETY2{e}

where <PRGPSETY> i s <DECSETY1 DECSETY2 LABSETY2>,
h idden{94d} token ,
NEST2 d e c l a r a t i o n of DECSETY1{41a}, go on{94f } token,
NEST2 TALLETY module se r i es

w i t h DECSETY w i t hou t DECSETY2 LABSETY2{d} !
where <DECSETY cure PROPSETY> i s <EMPTY cure LAB LABSETY>,

NEST2 LabeL d e f i n i t i o n of LAB{]2C},
NEST2 module s e r i e s w i t h ENPTY w i thou t LABSETY{d}

where <DECSETY cum PRDPSETY> i8 <EMPTY cure LAB LABSETY>,
compLet ion{94 f } token, NEST2 Label d e f i n i t i o n of LAB{32c},
NEST2 module s e r i e s w i t h EMPTY w i t hou t LABSETY{d}

where <DECSETY cure PROPSETY> i s <EMPTY cure EMPTY>,
EMPTY.

e) WHETHER TALLETY is the g rea te r of TALLETY1 and TALLETY2{d,41a,b} :
where <TALLETY> contains <TALLETYI>,

WHETHER <TALLETY> is <TALLETY2> ;
where <TALLETY> contains <TALLETY2>,

WHETHER <TALLETY> is <TALLETYq>.

f)* moduLe t e x t d e f i n i n g LAYER :
NEST TALLY moduLe text e x h i b i t i n g DECSETY d e f i n i n g LAYER{C).

{The use of 'TALLY' e x c l u d e s circuLar c h a i n s of module-def i n i t i o n s
s u c h as MODULE A (INVOKE B; SKIP; HIDDEN REAL x) , B = (INVOKE A).)

Examp Les:
a) MODULE A = (REAL a, b; a := b :=: 0).

B = (REAL a, b; HIDDEN REAL x, y)
b) B = (REAL a , b; HlDDEN REAL x, y)
C) (REAL a, b; HIDDEN REAL x, y)
d) R E A L a , b; H I D D E N REAL X, y

({ In example c, 'DECSETY' c o r r e s p o n d s t o t h e d e c l a r a t i o n REAL a , b and
PROPSETY' t o t h e h i d d e n d e c L a r a t i o n REAL x, y. ~ o t h t h e s e p r o p e r t i e s

w i l l b e made v i s i b L e as soon as t h i s module t e x t i s invoked , e x c e p t t h a t
'PROPSETY' w i L L o n l y b e v i s i b L e from i n s i d e i t .))

a) A rr ioduLe-declarat ion D is e l a b o r a t e d as foLLows:
, t h e c o n s t i t u e n t m o d u l e - t e x t s of D a re e l a b o r a t e d c o l l a t e r a l l y ;
F o r e a c h c o n s t i t u e n t m o d u l e - d e f i n i t i o n D l o f D, . t h e y ieLd o f t h e module - t ex t o f 01 is a s c r i b e d (4.8.2.a) t o t h e

d e f i n i n g - m o d u l e - i n d i c a t i o n of D l .

b) The y i e l d of a module - t ex t T, i n an e n v i r o n E, is t h e scene
composed of

(i) T , a n d
(i i) t h e env i ron n e c e s s a r y for (7 .2 .2 .~) T i n E m

c) A m o d u l e - s e r i e s c is e L a b o r a t e d as foLLows:
~f c h a s no d i r e c t d e s c e n d e n t {i,e., it is EMPTY), or i f c contains

a d i r e c t d e s c e n d e n t comp Let i o n - t o k e n ,
t h e n t h e e L a b o r a t i o n o f C is compLeted;
o t h e r wis e, . t h e d e c L a r a t i o n o r t h e u n i t , i f any, of C is e l a b o r a t e d ; . t h e series o f C is e l a b o r a t e d ,

{ { l t i s now p o s s i b l e for a s i n g L e C O M M O N - d e f i n i t i o n t o create more
t h a n one 'DEC ' i n t h e nest, or even no 'DEC'S a t aLL. Moreover,
'TALLY Is m u s t b e p a s s e d back f rom certain COMMON-def i n i t i o n s t o t h e
m o d u l e - s e r i e s .))
4.1a1.

A) COMMON :: ... ; moduLe INVOCATION.

a NEST TALLETY d e c l a r a t i o n of DEcsETY{a ,32b ,49d) :
NEST TALLETY COMMON d e c l a r a t i o n of DECSETY{42a,43a,44a,eS45a,

4 g a , 4 ~ a , -) ;
where cDECSETY> is cDECSETY1 DECSETY2>,

NEST TALLETYl COMMON d e c l a r a t i o n of DECSETYl
{42a,43a,44a,e,45a,4ga,4Aa,+,

a n d a L s o (g 4 f) t o k e n ,
NEST TALLETY2 d e c L a r a t i o n of DECSETY2{a),
where TALLETY is t h e g r e a t e r of TALLETY? a n d TALLETY2{49e).

b) E~EST TALLETY C O M ~ O N j o i n e d d e f i n i t i o n of PROPSETY
{b,42a,43a,44a,e,45a,46e,4ga,4Aa,541e) :

NEST TALLETY COPiMON d e f i n i t i o n of PROPSETY
{42b943b ,44c , f , 4 5 ~ , 4 6 f , 4 9 b , 4 A b , 5 4 l f ,-I ;

where CPROPSETY> is cPROPSETY1 P R O P S E T Y ~ > ,
NEST TALLETY? COMMON j o i n e d d e f i n i t i o n of PROPSETY~ { b) ,
a n d a L s o (g 4 f) t o k e n ,
NEST TALLETYZ COMMON d e f i n i t i o n O f PROPSETY2

{42b,43b,44c,f,45c,46f,49b,4Ab,541f,-),
where TALLETY is t h e g r e a t e r of T A L L E T Y ~ a n d T A L L E T Y ~ { ~ ~ ~) .

{{RuLe 4.1.l.c is no Longer n e e d e d ,))

AB39 p 27

{ {Th is requ i res some consequent changes in the syntax of s e r i e s . } }
3 .2 .1 .

b) SOlD NEST ser ies w i th PROPSETY{a,b,3Ac} :
• @• ;

where <PROPSETY> is <DECSETY1 DECSETY2 LABSETY2>,
NEST TALLETY dec la ra t i on of DECSETY1{41a}, go on{94f} token,
SOlD NEST ser ies w i th DECSETY2 LABSETY2{b} ;

0•• •

{{MoeuLes may be invoked by i nvoca t i on -decLa ra t i ons . ModuLes aLready
invoked in t h i s way may also have t h e i r i n d i c a t o r s rendered v i s i b l e
again by means of access ion -decLara t ions . } }

4.10. Invocat ion dec la ra t i ons

4 • 10 • 1. Syntax

A) INVOCATION :: invocation ; provocation ; accession.
B) MODIARY :: module DECSETY ; subsidiary DECSETY.

a) NEST2 TALLY INVOCATION dec la ra t i on of DECSETY{41a} :
INVOCATION{94d} token,

NEST2 TALLY INVOCATION jo ined d e f i n i t i o n of DECSETY{41b}.
b) NEST2 TALLY INVOCATION d e f i n i t i o n of DECSETY{41b} :

where <NEST2> is <NEST1 new PROPSETY1 DECSETY PRDPSETY2>
and DECSETY independent PROPSETY1 PROPSETY2{71a,b,c,q,p},

where INVOCATION of MDDIARY TALLY TAB def ines
DECSETY{c, d, e , - } ,

MOD IARY TALLY NEST2 appLied module i n d i c a t i o n wi th TAB{48b} ;
where <NEST2> i s <NEST1 new PROPSETY1 DECSETY PROPSETY2>

and DECSETY independent PROPSETY1 PRDPSETY2{71a,b,c,q,p},
where <INVOCATION> is <invocation>,
NEST2 TALLY module Text e x h i b i t i n g DECSETY

defining new DECSETY PRDPSETY{490}.
c) WHETHER invocation of module DECSETY TALLY TAB defines

DECSETY subsidiary DECSETY TALLY TAB{b} : WHETHER true.
d) WHETHER provocation of module DECSETY TALLY TAB defines

subsidiary DECSETY TALLY TAB{b} : WHETHER true.
e) WHETHER accession of subsidiary DECSETY TALLY TAB defines

DECSETY{b} : WHETHER true.

{ExampLes:
a) INVGKE B, (REAL a, bl a := b := 0)
b) B . (REAL a, b; a := b := 0) }

{Note that a provocation places a 'subsidiary DECSETY TALLY TAB'
in the nest. This may subsequently be identified by an accession
which then makes those 'DECSETY' avaiLabLe. An invocation makes both
the 'subsidiary DECSETY TALLY TAB' and the 'DECSETY' avaiLabLe
together, so that INVOKE A is identical in its effect to
PRCVE, JKE A; ACCESS A.}

7 .1 .1 .
o)
p)

WHETHER MODULE re l a ted SUBSIDIARY{d} : WHETHER f a l s e .
WHETHER SUBS ID IARY reLated MODULE {d} : WHETHER f a l s e .

{{observe tha t 'MODULE ' iS not reLated to 'SUBS ID IARY', So tha t
MODULE A = (SKIP) and INVOKE A may both occur in the same reach•
Contrariwise, this means that i n

(MODULE A = (SKIP); INVOKE A; (MODULE A = (SKIP); ACCESS A))
the ACCESS A in the inner reach i d e n t i f i e s the INVOKE A i n the outer
one.} }

AB39 p 28

4.10.2• semantics

a) The elaboration of an INVOCATION-decLaration consists
o9 the coLLateraL elaboration of its cons t i t uen t INVOCATION-
definitions.

b) An INVOCATION-definition-oT-DECSETY 1, i n an environ E, is
elaborated as foLLows:
or moduLe-text Let S be the of scenel inYieLded'E,- in E, by the appLied-moduLe-indicat ion

case A: I is an i n v o c a t i o n - d e f i n i t i o n or a " t r i g g e r r e d " {c}
pr ovocat io n-d e finit ion:
• Let El be the environ established beside E {3.2.2.b}, around the
environ of S, according to the moduLe-text T of St

the moduLe-series of T is elaborated in 51 { 4 . 9 . 2 . c } ;
; f the d i r e c t descendent of 1 is an appl ied moduLe- indicat ion,
then

• Let 'DECSETY' be 'DECSETY1 SUBSIDIARY TAB's
• the scene composed of T and E1 is ascr ibed in E to some
SUBS 1D IARY-defining-moduL e - ind i ca t i on -w i th -TAB;

Case B: I is an accession-definition:
• Let E1 be the environ of S i

Let 'DECSETYI= be 'DECSETY ;
Ot~er cases { I is an un t r igger red p r o v o c a t i o n - d e f i n i t i o n } :

the e labora t ion of I { invoLves no f u r t h e r ac t ion and} is ~ompLeted;
I f ' INVOCATION' is tinvocation' or 'accession',
then

For each value or scene which has been {previousLy in the case of
' access ion ' } ascr ibed in E1 to a QUALITY-de f in ing - ind ica to r -w i th -
TAX J,
1~ 'DECSETY1 ' envelops 'QUALITY TAX ',
then t ha t value or scene is { re - }asc r i bed in E to Jo

c) A p r o v o c a t i o n - d e f i n i t i o n ! is " t r i g g e r r e d " i f there ex is ts some
t r i g g e r r e d accession-definition whose appLied-moduLe-indication
i d e n t i f i e s {7 .2 •2•b} the appLied-moduLe- indicat ion of I .

An accession-definition is "triggerred" if it is not a constituent
of an untriggerred moduLe-definition•

A moduLe-def in i t ion M is " t r i g g e r r e d " i f there ex is ts some
i n v o c a t i o n - d e f i n i t i o n {whether t r i g g e r r e d or not} or some t r i gge r red
p r o v o c a t i o n - d e f i n i t i o n whose appLied-moduLe- indicat ion i d e n t i f i e s
{7 .2 .2 .b } the de f in ing-moduLe- ind ica t ion of M.

{The e labora t ion of an un t r igger red p r o v o c a t i o n - d e f i n i t i o n involves
no ac t i on . For example, in the e labora t ion of

NODULE A = (REAL X := random); PROVOKE A;
NODULE B = (H I D D E N ACCESS At REAL y := x • random); PROVOKE B;
NODULE C = (H I D D E N ACCESS B; REAL Z := y = random); PROVOKE C;

BEGIN ACCESS B; print (y) END
random is caLLed only twice.}

{{EstabLishment "beside" an environ (as opposed to "upon" i t) requ i res
a change to 3 .2 •2 .b . The f i r s t buLLet of t ha t ru le becomes:}}

upon or beside an environ El, poss ib ly not spec i f i ed , {which
Oetermines i t s scope,}

{{The two buLLets commencing " i f E1 is not spec i f i ed . . • " become:}}
• i f E1 is not spec i f i ed , then Let E1 be E2 and Let "upon El" be
assumed;
e a'stEb is newer in scope than E1 (is the same in scope as E l) iT the

Lishment is upon E1 (is beside E l) and is composed of E2 and a
new LocaLe corresponding to 'PROPSETY', i f C is present , and to
'EHPTY' o therwise;

{{various new symboLs have been invented:))
9.4.1.6

~ O U U L ~ symboL{4ga) MODULE
hidden symboL(4gd) H I D D E N
invocation symboL{4~a) I NV OKE
provocatlon symboL(4Aa) P R O V O K E
accession syrnboL(4~a) ACCESS

 inor or changes a re required a t other places i n the Report,))

{{3.2,2.bOCase A. The Line specifying the construct of the scene
ascribed for a LabeL-definition becomes:))

(i) the s e r i e s or module-series of which L i s a d i rec t
descendent, and

{{A jump m i g h t be a consti tuent u n i t of a module-series ra ther than of
a s e r i e s , The f i r s t buLLet of 5.4.4.2 becomes:)) . Let t h e scene yieLded i n E by t h e Label-identifier of J be composed

of a s e r i e s (a module-series) S2 and an environ E l ;
{{Ttie f i r s t buLLet of 5.4.4.2.Case A becomes:)) . Let S1 be t h e s e r i e s (module-series) of the smaLLest {1.1.3.2.9)

ser ia l -c lause (moduLe-t ext) containing s 2 ;

{{Extra predicates .))
7.1.1.

q) WHETHER PROPS PROP indeperldent P R O P S E T Y { ~ A ~) :
WHETHER PROPS independent PRuPsETY{a, b,c,q,r)

and PROP independent pRoPsETY{a, b , c) .
r) WIIETIIEH EHPTY independent PRGPSETY{LIA~) : WHETHER t rue.

{{The proper iden t i f i ca t ion of indicators declared via invocations i s
ensured as foLlows:))
7.202,

b) The d e f i r ~ i n s NEST-range (a) of each Q U A L I TY-app Lied-indicator-
w i t h-TAX I I contains {of necessity) e i the r a Q U A L ITY-NEST-LAYER-
d e f i n i n y - i n d i c a t o r - w i t h - T A X 12, o r e l s e an applied-module-indication
I 3 d i rec t Ly descended from a NEST-LAYER-INYOCAT ION-definition-of-
DECSETY1-QUALITY-TAX-DECSETY2. 11 1s then said t o " ident i fy" t h a t
12 or 130

{ { T h i s is s u f f i c i e n t t o ensure, i n conjunction w i t h 7 .2 .2 .~ , the proper
scope for rout ines containing accessions ,))

((1.1.4.2.c. The l i s t of e l i d i b l e hypernotions m u s t include:)) .. . ' w i t h o u t DECSETY LABsETY"
{ { A n extra predicate: 1)
1.3.1.

0) WHETHER <EPIPTY> contains <EIViPTY> : WHETHER true.

{ { ~ e v i s e d prayrnatic remark concerning scopes:))
2.1.1e3e

b) Each environ has one s p e c i f i c "scopene {The scope of each envipon
is never "oldern (2.1.2.f than t h a t of the environ from which it i s
composed (2.1.1.1.c).)

{ { A module-text m u s t be an establishing-clause.))
3m281e

i) * estabLishiny clause : ... ;
NEST TALLY module t e x t exhibit ing DECSETY defining LAYER{^^^).

{{Library decLarations (especially those which have s i d e e f f e c t s) shouLd
be i n t h e particular-prelude ra the r than i n the library-prelude. I n
10.5~1, extend t h e f i rs t sentence-by:))

and forms which, because of t h e w s i d e e f fec t s , a r e inappropriate f o r
inclusion i n t h e Library-prelude {10.1.2.c).

AB39 p 30

AB39.4.3 A Note on Integral Division

by L.G.L.T. Meertens, Mathematisch Centrum, Amsterdam.

Editor's note This paper is taken from a letter by Lambert Meertens in reply

to someone who had pointed out that the mod operator in ALGOL 68 does not

provide the same result as the remainder implied by the ÷ operator. This is

a sad tale, involving a lot of history going back to the desig n of ALGOL 60

and the fact that most American computers worked in "sign and modulus"

notation at that time. The matter has been raised before (see AB28.3.2, L04

and L05, half of which was accepted) but it has always been difficult to

excite any concern over it. The conclusion of the present paper is that it

is essentially the ÷ operator which is wrong. Future language designers

please note.

My distrust for arguments based on "natural choice for widely spread

computers" almost parallels my dislike for inconsistency.

i) The origin of integral division lies in the following question:

How many times b may be taken from a?

or, in a more mathematical expression

max {q I q ~ O A q x b may be taken from a}

or max {q] q ~O A q x b ! a}.

If we abbreviate this to a quot b (from Latin quotiens = how many times),

we might define

o_p_ ~uot ffi (int a, b) int:

if a < 0 A b > 0 then undefined

elif b < 0 then undefined
m

else int q := O ;

while (q + I) x b ~ a d__o q +:= I o d ;

q

fi .

Note that the reasons behind the undeflnedness for a < 0 A b > 0 and for b < 0

are of a different nature: in the first case no natural q satisfies q x b < a,

in the second case no such maximal q exists.

Several ways exist to relax the undefinedness. A "natural" way would

be to express the original question algorithmically thus:

int q :ffi 0 ;

while b may be taken from a

do (take b from a, q +:= I) od

which would have a quotb equal to zero for a _< b.

AB39 p 31

Another direction is indicated by algebraic considerations, viz, by the

wish to extend the validity of a = q x b ÷ a quotb = q from natural a

and positive b to arbitrary integral a and non-zero b.

One way to obtain the desired result is to define

a ÷ b : sit a x sign b x (abs a quot abs b) ,

chosen in ALGOL 60/68 and the hardware of many a computer, but this is

certainly not the only way. Arguments for this choice in ALGOL 6B were

the compatibility with ALGOL 60 and the Bauer-Samelson criterion (since the

"normal" question is that for which a is natural and b positive). It would,

however, have been possible, and, I think now, have been desirable, to define

the operation in such a way that

(a + n x b) ÷ b = a ÷ b + n

would have been valid for arbitrary a and n and non-zero b. For example, in

the binary search algorithm, an assignation like mid := (left + right) ÷ 2

will occur, and it is clearly desirable that this is not sensitive to a

simultaneous shift in the bounds. At present, if we define

o~mid : (ref [] real xl) ref real:

xl [(lwb xl + upb xl) ÷ 2],

then

[-i : O] real xl ; mid xl :=: mid xl [@I]

yields false~

ii) The origin of the modulo-operation lies in algebra:

Given a positive b, the integral numbers ~may be split into b residue

classes, denoted O, I, . .., b -_____!, where m = {n e ZZ I n ~ m (mod b)} .

We now want an operator mod such that a c m +-~ a mod b = m.

Again, this may in some way be extended to arbitrary non-zero b, e.g.,

by using Z~ = ~-b' since Z~ is the quotient group ~/{b}, where the ideal

{b} = b~ = (-b)~= {-b}. Note that a is already arbitrary integral.

iii) The inconsistency.

Define a rem b " a - a quo t b × b. ALGOL 60 programmers will have felt

a need for such an operation. As soon as one is doing multi-length integral •

arithmetic, base conversion, etc., the remainder is as important as the

quotient. In view of the "size" of arithmetic values and the conversion

routines in ALGOL 68, the need will have disappeared largely. Moreover,

unless a and b have opposite and different signs, the programmer may use

a rem b = a mod b'

The "inconsistency" is now that this does not hold for all a and b.

AB39 p 32

Possible remedies :

R.:
l

l l

R,.,~
1 1 1

Redefine ÷. This is a clean solution, which has been adopted

in ALEPH.

Strike mod. But whom do we serve by this? Expressing mod by

means of ÷ is cumbersome and bug-prone (since the programmer is

likely to overlook the possibility of negative a), and is probably

dealt with more efficiently in code.

Add rem. This is also a clean solution. However, there seems

to be little need for it, and whatever need is left will quite

likely be concerned with natural a and positive b (which is

catered for by mod), and, if not, the user will as likely want

a quot b to yield zero for a ~ b, and therefore, a re___mb to yield

a, as any other result.

It seems too late for any of these, but it will be clear that I should

favour R i. For future ALGOL 68-ish languages, I should like to see something

like .~ (÷, ÷x) = (int a, b) struct (int, int) : c (quotient, remainder) c.

AB39.5.1 ALGOL 68 Revised Repor t - ERRATA-4
AB39 p 33

The foLLowimg are c o r r e c t i o n s t o T e c h n i c a l Repor t TR74-3, the Revised
Report om the A L g o r i t h m i c Language ALGOL 68, i ssued i n March 1974 as a
supplement t o ALGOL B u l l e t i n 36. They are supp lementa l t o those
pub l i shed as ERRATA-2 i n ALGOL B u l l e t i n 37 and as ERRATA-3 im ALGOL
B u l l e t i n 38, and are t o be a p p l i e d a f t e r them. They b r i n g the t e x t of
TR74-3 imto L ine w i t h the d e f i n i t i v e t e x t of the Revised Repor t , a s
pub l i shed in Acta I n f o p m a t i c a VoL, 5, p t s 1, 2 & 3.

CATEGORY A (significant e r r o r s)

p121 1 0 . 2 . 3 . 0 . a + 5 ~ AND => a = 3, AND

a+15 l => +x = 9, +" = 9, |

p122 1 0 . 2 . 3 . 2 . b AND => &, AND

p123 1 0 . 2 . 3 . 3 . u I => +X, +', |

• p124 1 0 . 2 . 3 . 4 . S ! => +X, +', 1 ~.

1 0 . 2 . 3 . 5 . e , f ~ ! => +x, + - , 1

p126 1 0 . 2 . 3 . 8 . d AND => &, AND

P150 1 0 . 3 . 1 . 6 . k + 2 : k + 1 4 {supersedes ERRATA-2}
ELSE BOOL r e a d i n g ??? FI =>

ELSE REF REF POS cpos = cpos OF f ;
WHILE c OF cpos ~ c
DO

IF c < 1 V c > c OF book bounds (f) + 1
THEN unde f ined
ELIF c > c OF cpos THEN space (f)
ELSE backspace (f)
F!

OD

P151 1 0 . 3 . 2 . 1 . c + 8 ~Lm REAL XX := y l =>
Length := 0 => Length := (a f t e r = 0 I 1 I o)

c+9

p216 1 2 . 4 . " + = : "

XX ~ = >
y + aLo .5 x ~Lo .1 t a f t e r >

r, t => P, t
+X 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

I0.2.3.5.e, f
+. 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

I0.2.3.5.e, f
& 10.2.3.0.a, 10.2.3.2.b, I0.2.3.8.d

CATEGORY B (c L a r i f i c a t i o n s)

P39 2 . 1 . 4 . 2 . - 2:-1 c o n s t i t u e n t r e f e r ence - t o-pea L - a s s i g n a t i o n
(5 . 2 . 1 . 1 . a) =>

c o n s t i t u e n t r e f e r e n c e - t o - r e a l - s e p i a L -c lause
(3 . 2 . 1 . a)

P45 3.0.I.f+3,+4 ~ NEST => NEST STYLE

p46 3 .2 .+4 sequence => poss lbLy empty sequence

3 .2 .+5 ~ which => which, i f any,

AB39 p 34

p63 4.6.1.-3

P65

p68

P76

p83

p88

P89

P90

.P91

the f L e x i b i L i t y => f L e x i b i L i t y

p64 4.6.1.exampLes.i
1 : n , 1 : m = > 1 : m, 1 : n

4 .6 .2 .a+4 ~ developed => "deveLoped"

5.+7 ~ theAend => the end ~ { t w i c e }

5 . 3 . 2 . 2 . b . C a s e C+5
whlch => and # { t w l c e }

6.1.+10 # NEST => 'NEST'

6 . 7 . 1 . - 2 ~ caLL => caLLing

7.+5 ~ booLean => 'booLean'

7 .1 .1 .m # k , L ,n => k , L , n , a T f

7.2.~11 ~ 'pea l Le t t e r x ' =>
' r e fe rence to peaL Le t te r x'

P99 8 .1 .0 .1 .a+1 ~ SIZE{94d} symbol => SIZE symboL{94d}

p101 8 .1 .2 .2 .b .Case A+2
,~ BYe => B Y e

p103 8 .2 .2 .a+7 ~ i n eD, => conta ined i n eD,

p104 8.3.+4 # aLL=is=weLL => aLL is weLL

p107 9 .2 .1 .d+6 ~ other PRAGMENT symbol => PRAGMENT symbol

p114 9 . a . 2 . 2 . c + 2 # a t y p o g r a p h i c a l d i sp lay f ea tu re =>
typograph icaL d i sp lay fea tu res

9 . 4 . 2 . 2 . c + 7 ~ L e t t e r - L - L e t t e r - o => b o L d - L e t t e r - L - L e t t e r - o

p119 10.2.1.J+3,m+3 ~ i n ~La, =>
of which '=LAW is composed,

p121 10o2.3.0.a+7,+8 ~ < = 5 ??? GT = 5, =>
< = 5, LT = 5, ~ = 5, <= = 5, LE = 5,
Z = 5, >= = 5, GE = 5, • = 5, GT = 5,

10 .2 ,3 ,1 ,e+3 # produced => produced (nor any unintended
particuLar-program be produced) #

P135 10.3 .1 .3 .bb+1 ,+3,+5, +7, +9
which y ieLds => , which is

p137 1 0 . 3 . 1 . 3 . c c . " o n chap error"-3
"page~numberA" => "page number "

P138 1 0 . 3 . 1 . 3 . f f + 1 t caLLing => -caLLs , of

10 .3 .1 .3 .hh+5 ~ n~ => n := Ol ,~

p140 10.3 .1 .4 .aa+1 # an e x P L i c i t caLL => e x p L i c i t L y caLLing

p142 10 .3 .1 .4 .d+16 :17
the book ??? putting =>
opening is inhibitea by other users

p147 1 0 . 3 . 1 . 6 . b + 2 # cueeent p o s (f) => cpos OF f

P151 1 0 . 3 . 2 . 1 . c + 6 # y := => y =

P157 1 0 . 3 . 3 . 1 . a . " L b i t s Lb"+2
~fm OF LD => ~L fm OF Lb

p161 I O . 3 . 3 . 2 . a . " R E F L BITS"+2

p165 10 .3 .4 • 1 .1 .ExampLes .a , . b, . ~ , . e
" t a b L e , o f " => =tabLe of"

p167 1 0 . 3 . 4 . 1 . 1 . g g + 1 # 1 0 . 2 . 5 . a => 1 0 . 3 . 5 . b

1 0 . 3 . 4 . 1 . 1 . h h + 2 # cc => gd

1i+2 ~ 00 => ee

p173 1 0 . 3 . 4 . 3 . 1 . b b + 2 2 # numbep t o => numbep of d l g i t s t o

P175 10 .3 .4 .6 .1 .ExampLe .a
" t a b L e , o f w => " tabLe of"

p176 10 .3o4 .7 .1 .bb+8 ~ o =>
• i f s l , cannot be eepr, eserrted by such a
s t e i n g , t he conveps ion i s unsuccess fuL .

p182 1 0 . 3 . 5 . d + 7 ~ ELSE => ELIF UPB ins > 1
THEN

1 0 . 3 . 5 . g - 4 E ELSE => EL1F UPB fpames • 1
THEN

p185 l O . 3 . 5 . 1 . a . " e d i t L i n t " + 2
s := => STRING t =

+3 ~ LOC INT, S => LDC INT, t .~

+6 ~ ELSE => ELSE t PLUSTD s;

+7 # UPB S => UPB t

" e a i t L peaL"+2 # s lgn2 := FALSE, => STRING po i r r t :=

AB39 p 35

+3

+5

+6

+7

+8:+9

+12

+13

+14

+17

WN

,~ STRING t! =>

)) =>) t p o l n t := " . ")

,~ (? " e " ???)) s => ,~

.~ e , 0 => ? me"

(t: := ??? PLUSTO s)s => e d l t l r r t (e x p) I # { s l c }

(t : = => STRING t =
)) =>)~
PLUSTO S; =>

LOC INT, S => LDC INT, t

ELSE =>
ELSE t [: b] + p o i n t + t [b + 2 :] PLUSTO s!

AB39 p 36

p187 IO.3.5.1.a."GPATTERN"-3
s i n s e r t := LOC [1 : O] SINSERTI =>
FOR i TO UPB s i n s e r t
DO s i n s e r t [1] := (0, " ") OD=

p188 10 .3 .5 .1 .b+10 ~ t r u e => TRUE 6

'ma rke r= " . " ' +1 ~ (s j ~ " . " I J - := 1) t =>

p189 1 0 . 3 . 5 . 2 . a . " ¢ boolean ¢"+2
STRING (f L i p) => f l i p

10 .3 .5 .2 .a . " t l t complex ¢"+6
b l V b2 => bl A b2

P191 10.3.5.2.a."FPATTERN"+2
s i n s e r t := LDC [1 : O] SINSERT; =>
FOR i TO UPB s i n s e r t
DO sinsert [i] := (0, " ") OD;

"FPATTERN"+4 6 END => END ,

p199 11.5.+3 s u i t a b l e => s u i t a b l y

p202,203
11.11."putf"+1,+3,+5,+7 (at the end of each Line)

6 A = > X 6

"puL l "+2 ,+4 ,+6 ,+8 (a t the s t a r t of each L ine)
=> " ~

{in other editions of the Report, this treatme~
of Line splits in formats may occur at differerrt
p o s i t i o n s }

"puL l "+1 :+9 a. => ~ {throughout}

p216 12.3."baLances" ~ g => g
'begins w i t h ' 1 . 3 . 1 . h , i , j

"coincides with"
6 L=> L

'contains' 1.3.1.m, n 6

" faLse" ~ a , b = > b ~

"subset o f " ~ n = > n
'true' 1.3.1.a

p220 " p r i n t " , " p r i n t f " , " r e a d " , " r e a d b i n " , " r e a d f "
10 .5 .2 . => 10 .5 .1 . 6

"standconv" 6 2.d => 2.d
stop 10 .5 .2 .a

"write", "write bin", "writef"
6 10.5.2. => 10.5.1.

AB39 p 37

CATEGORY C (minor misprints)

p4

p18

p24

p25

p27

p33

p38

p46

p48

p52

p54

p57

p61

p65

p71

p84

p88

P90

p91

P93

0 . 2 . 3 . + I # *own, => mOWN~

1.1.3.4.e+I0 # (b) may => (c) may #

1 . 1 . 5 . b . (i i i) + 2 ~ provided ones; => ones provided in mD,,

1.3 . -1 # Looking => Looking

1 .3 .3 - -5 ~, 'unLess => +'unLess

2 . 1 . 3 . 1 . f - 5 # t o a => a #

2 .1 .4 .+2 # ac t ion => ac t i on .

3-1-1.a+1 # 32a => =32a-

3 .2 .1 .a+3 # Here => ,Here

b+l # 94f => , 9 4 f - #

3.2.2.b,Case A # a an => an

3 . 4 . 1 . - 2 ~ except => (except

3.4.2.-11 # 1664 => 1664,

3.5.2.step 3+2 # mwhiLe => +whiLe

4 .4 .2 . -2 # • => x

4.4.2.b+6 # 'MODE', => +'MODE',

4 .6 .2 .b .Case B+7 # bound, of t ha t => bound, of tha t #

5 . 2 . 3 . 1 . - 1 # ,sampLe => +sampLe

6.1.1.ExampLes.e+1
CROSS references => cross- re ferences

6.7.+5 # • => x

"ambiguities"+1 # 9? ¢,=>~97 ¢o , #

"In such cases"-5
SKIP,=> SKIP, ,

-1

7 .2 . -1

7.2.2.c+3,+12

2? ¢- => 2? ¢, •

end, } => END, . }

. => | #

AB39 p 38

p102 8 .1 .5 .+1

p107 9 . 3 . c - 2

p113 9 .4 .2 .1 .G

9 .4 .2 .2 .b+5

p128 1 0 . 2 . 3 . 9 . e

p125 10 .2 .3 .7 .0 .+1

p138 10.3.1.3.ff+2

p140 10 .3 .1 .4 .bb -1

p147 10 .3 .1 .6 .dd

p156 10 .3 .3 .1 .ee

avoid => *vo id

refer,ence Language => refer,ence-Language

H => el l *
'~ I => • l -e .~

being, => , be ing,

~L BYTES => ~L mBYTES

shor t => shor ten ~ { tw i ce }

caLL => +caLLa

imp lementa t ion dependent =>
imp L ementat ion-dependent

caLL => +caLLa

, then => e, then

p168 1 0 . 3 . 4 . 1 . 1 . k k - 6 ~ suppr,esssed => suppressed

p159 10 .3 .3 .2 . cc+4 ~ " " n.le or, " o l e " =>
n"J."e or, ani",

P171 10 .3 .4 .1 .2 .d+3 ~ i = 1 => u i = 1

P177 10 .3 .4 .8 ,1 .b+4 ~ t o k e n { 9 4 f } => {94 f } token

p185 l O . 3 . 5 . 1 . a . " e d i t L r,eaL"+14
er,r,r,opchar, => er,r,or,char,

P196 10.5 .1 .+7 ~ TAX* conta ined => TAXe conta ined

P197 10.5.2 .+5 ~ caLLs => +caLLse

P214 "unsuppressib L e-suppr,ession"
1 0 . 3 . 4 . 1 . 1 . L => o10 .3 .4 .1 .1 .L

p217 12 .4 . "e "

" e " + l

ROQIe

"%+.

u %+: =n

• %X"

p218 12.4 . "Up"

p224 12.5.MONAD+3

10.2.3.10.L, m, n, o, =>

s => s,~ 10.2.3.10.L, m, n, o

~t,t=>t~

%+ 10 .2 .3 .11 . k =>

%+:= 10 .2 .3 .0 .a =>

~ n => n
%x:= 1 0 . 2 . 3 . 0 . a , 10 .2 .3 .11 .k

t t , t = > t t

s t y l e TALLY MONAD => s t y l e TALLY monad

