Jose E. Marchesi

GNU Project

FSCONS 2011

Outline

1 A bit of history

2 The language

3 The World Domination Plan

Three magical decades

e 1950-1960 Discovery and Description
Symbolic assembly languages and macro-assembly languages.
Basic concepts.
Basic implementation techniques.
Fortran, Algol60, Cobol, Lisp.
e Language = Tool.
e 1961-1969 Elaboration and Analysis
e Models and theories. Program correctness.
e PL/I, Algol 68.
e Language = Subject of study.
e 1970-1980 Technology

Less abstraction and elaboration.
More technology of programming.
Complexity barrier.

Simplicity.

And then...

e 1981-2011 Decadence... ;)

The First Generation

Fortran: the practical milestone.
Cobol: data description facilities.
Lisp: simplicity and power.

Algol 60: the conceptual milestone.

Algol 60

e BNF used to describe syntax.

e English used to describe semantics.
e Very uniform structure in the report:
1.2. Feature
1.2.1. Syntax
<BNF description>
1.2.2. Examples
<Usage examples>
1.2.3. Semantics
<English descriptions>

e Algol 60 Lawyers — Algol 60 Theologians.

The Second Generation

Two ways of evolving languages:
e By synthesis: PL/I
e By generalization: Algol 68

IFIP Working Group 2.1

Working group on Algorithmic Languages and Calculi.
IFIP: International Federation for Information Processing.
http://www.cs.uu.nl/wiki/IFIP21/

1962 Rome meeting = The Revised Report on Algol 60.
Support and maintenance of Algol 60.

Ultimately forked by IFIP Working Group 2.3 on Programming
Methodology.

Generalizing Algol 60

Theologians discovered many problems in Algol 60.
This leaded to several new languages, and religion wars!
Aadrian Van Wijngaarden.

Minority report.

Dijkstra: "Congratulations, your Master has done it"

Generalizing Algol 60

IFIP WG 2.1

ALGOL 60

P

IFIP WG 2.1

ALGOL X

—>

i Niklaus Wirth

ALGOL W

—>

ALGOL 68

Pascal

Algol 68

e Generalization of Algol 60.
e Extreme orthogonality.

o Never widely adopted, because:

VW (two-level) grammars.

Lack of adequate implementation.
Lack of user manuals.

New terminology.

Too general and flexible?

Orthogonality

e Independent ideas which are developed and applied with
generality.

e N+ M rules, not N+ M

e Example:

e Variables can be passed to procedures.
e Procedures can be assigned to variables.
e = Procedures can be passed to procedures.

Some Algol 68 terminology

Modes (types)

Moid = mode or indicant.
Elaboration = run.
Multiples.

Go-on symbol: ;

...and many more weird stuff...

PROGRAM hello world CONTEXT VOID
USE standard
BEGIN
print (("Hello world!"))
END
FINISH

Hello, world!

INT a var :=

’int’ a var :

.INT. A VAR :

Stropping

10; IF a var > 5 THEN a var := 5 FI

10; ’if’> a var > 5 ’then’ a var := 5 ’fi’

1]
(o2}

FT.

10; .IF. A VAR > 5 .THEN. A VAR :

Integers: 1, 10, 1eb.

Real numbers: 3.14, 1.602 10 e-19.
Characters: “a”, “b".

Strings: “foobar”

Row-displays: (10, 20, 30)
Structure-displays: (10, “twenty”, 0.10)

Denotations

|dentity declarations

INT number of eyes = 2

[JINT list = (1, 2, 3)

[,JINT matrix = ((1, 0, 0),
0, 1, 0,
(0, 0, 1))

STRUCT(INT i, STRING name) s = (10, ‘‘a name’’)

Names and generators

REF INT counter = LOC INT
REF []INT i7 = LOC[1:7]INT
REF FLEX[]INT fn = LOC FLEX[1:0]INT

REF STRUCT(INT i, STRING name) s = HEAP STRUCT(INT,STRING)

Assignment

REF INT counter = LOC INT := 10;
REF INT another counter = LOC INT := counter

References: names storing names

REF INT a variable = LOC INT := 10;
REF INT another variable = LOC INT := 20;
REF REF INT a ref = LOC REF INT := a variable;

a ref := a variable # REF REF INT := REF INT #
a ref := 66 # REF REF INT := INT #
a ref := another variable # REF REF INT := REF INT #
aref :=77 # REF REF INT := INT #

Some syntactic sugar

REF INT i = LOC INT
REF INT a = HEAP INT := 10
REF REF INT pointer = LOC REF INT

REF[JREAL r = LOC[3]REAL := (1.0, 2.0, 3.0)

. can be written as...
INT i;

HEAP INT a := 10
REF INT pointer;

[3]REAL r := (1.0, 2.0, 3.0)

e Values have scope.

e Identifiers have range.

INT j;

BEGIN
HEAP INT i := 10;
j =1

END

Scope and range

Coercions and Contexts

e Coercions

Voiding

Rowing

Widening

Uniting

Deproceduring
Dereferencing
Weaking-dereferencing

e Contexts
e Strong
e Firm
e Meek
o Weak
e Soft

Dereferencing

REF FQOO :

REF FOO

becomes...

REF FOO :

FOO

Deproceduring

PROC FOO
is elaborated to...

FOO0

Operator names are like MOIDS.

Unary operators.

Dyadic operators with priority from 1 to 9.
Predefined: arithmetic, exponentiation.

Can be overloaded.

Operators

Multiples (Arrays)

Algol 68 has a very rich support for arrays.
Multidimensional: [JINT, [,1INT, [, ,]1INT ...

Slicing

[,JINT arr = ((1, 2, 3),
(4, 5, 6),
(7, 8, 9));

arr(1,]; Yields (1, 2, 3)
arr[,1]1; Yields (1, 4, 7)
Trimming:
[1CHAR quote =
"There no system but GNU and Linux is one of its kernels";

quotel[:5]; Yields ¢ ‘There’’
quote[7:8]; Yields ‘‘no?’’
quote[UPB quote - 7:]; Yields ‘‘kernels?’’

Blocks

Also known as “Enclosed clauses”.
Must contain at least one unit.

Can be nested.
Two alternative notations:

e BEGIN..END
e (L)

Examples:

BEGIN INT i := 10; print ((i)) END

(INT i := 10; print ((i)))

Conditional Clauses

IF a THEN
b

ELIF ¢ THEN
d

ELSE
e

FI

(albl:cldl e

Multiple Conditional Clauses

CASE a IN
ul,
u2,
u3
ouT
uéd
ESAC

(a | ut, u2, u3 | ud)

Iterative Clauses

FOR a IN 10 TO 20 WHILE cond
DO

0D

PROC fibonacci = (INT num)INT:

BEGIN
IF fibonacci < 2 THEN
num
ELSE

END

PROC fibonacci = (INT num)INT:

Procedures

(n<2 | n | fibonacci(n-1) + fibonacci(n-2))

Parallelism!

PAR BEGIN
SEM a semaphore;

ul;
u2;

END

World Domination Plan

Write an Emacs mode for Algol 68.

Get an Algol 68 compiler which works in modern computers.
Integrate that compiler with gcc.

Proof of concept: gcc frontend written in Algol 68.

Write an Algol 68 frontend for gcc.

Assemble a GNU Working Group 2.1.

Evolve Algol 68 (and implementation) into GNU Algol.
Profit!!

The Algol 68 Emacs mode

e Font locking support.
e Indentation using SMIE.
e Available at http://www.jemarch.net/a68-mode.html

The ctrans compiler

Free software Algol 68 RS compiler by RSRE.

ELLA: hardware description language.

Standard prelude: QAD (quick-and-dirty) by Dr. Sian Leitch.
Developed during the 1980s and 90s.

Translates to C, portable.

Uses the esoteric RS modules system, with restrictions.
Several restrictions to the language: no PAR, etc.

Old and funny.

Supports 64bits, but only since yesterday :D

Bootstrapping the frontend

algol68toc

The Algol 68 gcc frontend

Currently a Brainl‘@/ﬁ interpreter... ahem..
a681.c entry points.

gccaliens.a68 ctrans — interface.
a68lang.a68 gcc hooks.

Make-1lang.in build rules.

Evolving the language

Enumerated values

MODE fruit = ENUM (Apple, Orange, Blah)

Support for generics.

Support for _ in mode indicants (a68g extension).
Support for _ in identifiers (a68g extension).

Range types.

Named arguments.

say hello (message => ‘‘Hello!’’, indent => 10)
Arbitrary precision for LONGLONG (gmp).

Procedure overloading.

Explicit memory deallocation.

Evolving the language

Separation between declaration and body.

Arbitrary precision for LONGLONG (gmp).

Procedure overloading.

Separation between declaration and body.

Subtypes.

Classes... or tagged types?

Improvements to control structures: DOWNTO, UNTIL.
Removing stropping?

In the meanwhile... Algol 68 Genie!

Complete and modern interpreter by Marcel van der Veer.
GPL.

Written in C.

Implements some interesting extensions.

http://www.xs4all.nl/ jmvdveer/algol.html

	A bit of history
	The language
	The World Domination Plan

