
Jose E. Marchesi

GNU Project

FSCONS 2011

Outline

1 A bit of history

2 The language

3 The World Domination Plan

Three magical decades

• 1950-1960 Discovery and Description
• Symbolic assembly languages and macro-assembly languages.
• Basic concepts.
• Basic implementation techniques.
• Fortran, Algol60, Cobol, Lisp.
• Language = Tool.

• 1961-1969 Elaboration and Analysis
• Models and theories. Program correctness.
• PL/I, Algol 68.
• Language = Subject of study.

• 1970-1980 Technology
• Less abstraction and elaboration.
• More technology of programming.
• Complexity barrier.
• Simplicity.

And then...

• 1981-2011 Decadence... ;)

The First Generation

• Fortran: the practical milestone.

• Cobol: data description facilities.

• Lisp: simplicity and power.

• Algol 60: the conceptual milestone.

Algol 60

• BNF used to describe syntax.

• English used to describe semantics.

• Very uniform structure in the report:

1.2. Feature

1.2.1. Syntax

<BNF description>

1.2.2. Examples

<Usage examples>

1.2.3. Semantics

<English descriptions>

• Algol 60 Lawyers → Algol 60 Theologians.

The Second Generation

Two ways of evolving languages:

• By synthesis: PL/I

• By generalization: Algol 68

IFIP Working Group 2.1

• Working group on Algorithmic Languages and Calculi.

• IFIP: International Federation for Information Processing.

• http://www.cs.uu.nl/wiki/IFIP21/

• 1962 Rome meeting ⇒ The Revised Report on Algol 60.

• Support and maintenance of Algol 60.

• Ultimately forked by IFIP Working Group 2.3 on Programming
Methodology.

Generalizing Algol 60

• Theologians discovered many problems in Algol 60.

• This leaded to several new languages, and religion wars!

• Aadrian Van Wijngaarden.

• Minority report.

• Dijkstra: "Congratulations, your Master has done it"

Generalizing Algol 60

Algol 68

• Generalization of Algol 60.

• Extreme orthogonality.

• Never widely adopted, because:
• VW (two-level) grammars.
• Lack of adequate implementation.
• Lack of user manuals.
• New terminology.
• Too general and �exible?

Orthogonality

• Independent ideas which are developed and applied with
generality.

• N +M rules, not N ∗M
• Example:

• Variables can be passed to procedures.
• Procedures can be assigned to variables.
• ⇒ Procedures can be passed to procedures.

Some Algol 68 terminology

• Modes (types)

• Moid = mode or indicant.

• Elaboration = run.

• Multiples.

• Go-on symbol: ;

• ... and many more weird stu�...

Hello, world!

PROGRAM hello world CONTEXT VOID

USE standard

BEGIN

print (("Hello world!"))

END

FINISH

Stropping

INT a var := 10; IF a var > 5 THEN a var := 5 FI

'int' a var := 10; 'if' a var > 5 'then' a var := 5 'fi'

.INT. A VAR := 10; .IF. A VAR > 5 .THEN. A VAR := 5 .FI.

Denotations

• Integers: 1, 10, 1e6.

• Real numbers: 3.14, 1.602 10 e-19.

• Characters: �a�, �b�.

• Strings: �foobar�

• Row-displays: (10, 20, 30)

• Structure-displays: (10, �twenty�, 0.10)

Identity declarations

INT number of eyes = 2

[]INT list = (1, 2, 3)

[,]INT matrix = ((1, 0, 0),

(0, 1, 0),

(0, 0, 1))

STRUCT(INT i, STRING name) s = (10, ``a name'')

Names and generators

REF INT counter = LOC INT

REF []INT i7 = LOC[1:7]INT

REF FLEX[]INT fn = LOC FLEX[1:0]INT

REF STRUCT(INT i, STRING name) s = HEAP STRUCT(INT,STRING)

Assignment

REF INT counter = LOC INT := 10;

REF INT another counter = LOC INT := counter

References: names storing names

REF INT a variable = LOC INT := 10;

REF INT another variable = LOC INT := 20;

REF REF INT a ref = LOC REF INT := a variable;

a ref := a variable # REF REF INT := REF INT #

a ref := 66 # REF REF INT := INT #

a ref := another variable # REF REF INT := REF INT #

a ref := 77 # REF REF INT := INT #

Some syntactic sugar

REF INT i = LOC INT

REF INT a = HEAP INT := 10

REF REF INT pointer = LOC REF INT

REF[]REAL r = LOC[3]REAL := (1.0, 2.0, 3.0)

... can be written as...

INT i;

HEAP INT a := 10

REF INT pointer;

[3]REAL r := (1.0, 2.0, 3.0)

Scope and range

• Values have scope.

• Identi�ers have range.

INT j;

BEGIN

HEAP INT i := 10;

j := i

END

Coercions and Contexts

• Coercions
• Voiding
• Rowing
• Widening
• Uniting
• Deproceduring
• Dereferencing
• Weaking-dereferencing

• Contexts
• Strong
• Firm
• Meek
• Weak
• Soft

Dereferencing

REF FOO := REF FOO

becomes...

REF FOO := FOO

Deproceduring

PROC FOO

is elaborated to...

FOO

Operators

• Operator names are like MOIDS.

• Unary operators.

• Dyadic operators with priority from 1 to 9.

• Prede�ned: arithmetic, exponentiation.

• Can be overloaded.

Multiples (Arrays)

• Algol 68 has a very rich support for arrays.

• Multidimensional: []INT, [,]INT, [,,]INT ...

• Slicing

[,]INT arr = ((1, 2, 3),

(4, 5, 6),

(7, 8, 9));

arr[1,]; Yields (1, 2, 3)

arr[,1]; Yields (1, 4, 7)

• Trimming:

[]CHAR quote =

"There no system but GNU and Linux is one of its kernels";

quote[:5]; Yields ``There''

quote[7:8]; Yields ``no''

quote[UPB quote - 7:]; Yields ``kernels''

Blocks

• Also known as �Enclosed clauses�.

• Must contain at least one unit.

• Can be nested.

• Two alternative notations:
• BEGIN..END
• (..)

• Examples:

BEGIN INT i := 10; print ((i)) END

(INT i := 10; print ((i)))

Conditional Clauses

IF a THEN

b

ELIF c THEN

d

ELSE

e

FI

(a | b |: c | d | e)

Multiple Conditional Clauses

CASE a IN

u1,

u2,

u3

OUT

u4

ESAC

(a | u1, u2, u3 | u4)

Iterative Clauses

FOR a IN 10 TO 20 WHILE cond

DO

...

OD

Procedures

PROC fibonacci = (INT num)INT:

BEGIN

IF fibonacci < 2 THEN

num

ELSE

END

PROC fibonacci = (INT num)INT:

(n<2 | n | fibonacci(n-1) + fibonacci(n-2))

Parallelism!

PAR BEGIN

SEM a semaphore;

u1;

u2;

...

END

World Domination Plan

1 Write an Emacs mode for Algol 68.

2 Get an Algol 68 compiler which works in modern computers.

3 Integrate that compiler with gcc.

4 Proof of concept: gcc frontend written in Algol 68.

5 Write an Algol 68 frontend for gcc.

6 Assemble a GNU Working Group 2.1.

7 Evolve Algol 68 (and implementation) into GNU Algol.

8 Pro�t!!

The Algol 68 Emacs mode

• Font locking support.

• Indentation using SMIE.

• Available at http://www.jemarch.net/a68-mode.html

The ctrans compiler

• Free software Algol 68 RS compiler by RSRE.

• ELLA: hardware description language.

• Standard prelude: QAD (quick-and-dirty) by Dr. Sian Leitch.

• Developed during the 1980s and 90s.

• Translates to C, portable.

• Uses the esoteric RS modules system, with restrictions.

• Several restrictions to the language: no PAR, etc.

• Old and funny.

• Supports 64bits, but only since yesterday :D

Bootstrapping the frontend

The Algol 68 gcc frontend

• Currently a BrainFuck interpreter... ahem..

• a681.c entry points.

• gccaliens.a68 ctrans → interface.

• a68lang.a68 gcc hooks.

• Make-lang.in build rules.

• ...

Evolving the language

• Enumerated values

MODE fruit = ENUM (Apple, Orange, Blah)

• Support for generics.

• Support for _ in mode indicants (a68g extension).

• Support for _ in identi�ers (a68g extension).

• Range types.

• Named arguments.

say hello (message => ``Hello!'', indent => 10)

• Arbitrary precision for LONGLONG (gmp).

• Procedure overloading.

• Explicit memory deallocation.

Evolving the language

• Separation between declaration and body.

• Arbitrary precision for LONGLONG (gmp).

• Procedure overloading.

• Separation between declaration and body.

• Subtypes.

• Classes... or tagged types?

• Improvements to control structures: DOWNTO, UNTIL.

• Removing stropping?

In the meanwhile... Algol 68 Genie!

• Complete and modern interpreter by Marcel van der Veer.

• GPL.

• Written in C.

• Implements some interesting extensions.

• http://www.xs4all.nl/ jmvdveer/algol.html

	A bit of history
	The language
	The World Domination Plan

